The neighborhood area network of a smart grid usually has hierarchical wireless communication. Due to forwarding and processing more data, the upper-layer nodes are more likely to suffer congestion and energy exhaustion. This phenomenon leads to the failure of uploading data to the control center. To solve this problem, this paper proposes a scheme for constructing a multi-factor fault-tolerant hierarchical network. This scheme firstly defines a criterion for the generation of redundant links by multi-factor method in a hierarchical wireless network with the characteristics of the neighborhood area network. Then the redundant links are used to reconstruct the existing topology of the neighborhood area network for improving fault tolerance. Finally, a greedy routing algorithm is put forward to select a proper data transmission path by bypassing low energy nodes, further reducing the failure of uploading data to the control center. The simulation results show that the proposed scheme can effectively improve the fault tolerance of the network topology of the wireless neighborhood area network and balance the network energy consumption. Compared with the original scheme, the proposed scheme improves the fault tolerance by 35% and the relative transmission rate by 21%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.