ObjectivesTo compare the efficacy and safety of topical non-steroidal anti-inflammatory drugs (NSAIDs), including salicylate, for the treatment of osteoarthritis (OA).MethodsPubMed, Embase, Cochrane Library and Web of Science were searched from 1966 to January 2017. Randomised controlled trials (RCTs) comparing topical NSAIDs with placebo or each other in patients with OA and observational studies comparing topical NSAIDs with no treatment or each other irrespective of disease were included. Two investigators identified studies and independently extracted data. Bayesian network and conventional meta-analyses were conducted. The primary outcomes were pain relief for RCTs and risk of adverse effects (AEs) for observational studies.Results43 studies, comprising 36 RCTs (7 900 patients with OA) and seven observational studies (218 074 participants), were included. Overall, topical NSAIDs were superior to placebo for relieving pain (standardised mean difference (SMD)=−0.30, 95% CI −0.40 to –0.20) and improving function (SMD=−0.35, 95% CI −0.45 to –0.24) in OA. Of all topical NSAIDs, diclofenac patches were most effective for OA pain (SMD=−0.81, 95% CI −1.12 to –0.52) and piroxicam was most effective for functional improvement (SMD=−1.04, 95% CI −1.60 to –0.48) compared with placebo. Although salicylate gel was associated with higher withdrawal rates due to AEs, the remaining topical NSAIDs were not associated with any increased local or systemic AEs.ConclusionsTopical NSAIDs were effective and safe for OA. Diclofenac patches may be the most effective topical NSAID for pain relief. No serious gastrointestinal and renal AEs were observed in trials or the general population. However, confirmation of the cardiovascular safety of topical NSAIDs still warrants further observational study.
Spider silk is a natural polymeric fiber with high tensile strength, toughness, and has distinct thermal, optical, and biocompatible properties. The mechanical properties of spider silk are ascribed to its hierarchical structure, including primary and secondary structures of the spidroins (spider silk proteins), the nanofibril, the "core-shell", and the "nano-fishnet" structures. In addition, spider silk also exhibits remarkable properties regarding humidity/water response, water collection, light transmission, thermal conductance, and shape-memory effect. This motivates researchers to prepare artificial functional fibers mimicking spider silk. In this review, the authors summarize the study of the structure and properties of natural spider silk, and the biomimetic preparation of artificial fibers from different types of molecules and polymers by taking some examples of artificial fibers exhibiting these interesting properties. In conclusion, biomimetic studies have yielded several noteworthy findings in artificial fibers with different functions, and this review aims to provide indications for biomimetic studies of functional fibers that approach and exceed the properties of natural spider silk.
Objective Hyperuricemia is a precursor to gout and is often present in other metabolic diseases that are promoted by microbiome dysbiosis. We undertook this study to examine the association of gut microbiota with hyperuricemia and serum urate levels in humans. Methods Study participants were derived from a community‐based observational study, the Xiangya Osteoarthritis Study (discovery cohort). Hyperuricemia was defined as the presence of a serum urate level >357 μmoles/liter in women and >416 μmoles/liter in men. Gut microbiota were analyzed using 16S ribosomal RNA sequencing of stool samples. We examined the relationship of microbiota dysbiosis (i.e., richness, diversity, composition, and relative abundance of microbiota taxa) and predicted functional pathways to prevalent hyperuricemia and serum urate levels. We verified the associations in an independent observational study, the Step Study (validation cohort). Results The discovery cohort consisted of 1,392 subjects from rural areas (mean age 61.3 years, 57.4% women, 17.2% with hyperuricemia). Participants with hyperuricemia had decreased richness and diversity, altered composition of microbiota, and lower relative abundances of genus Coprococcus compared to those with normouricemia. Predicted KEGG metabolism pathways including amino acid and nucleotide metabolisms were significantly altered in subjects with hyperuricemia compared to those with normouricemia. Gut microbiota richness, diversity, and low relative abundances of genus Coprococcus were also associated with high levels of serum urate. These findings were replicated in the validation cohort with 480 participants. Conclusion Gut microbiota dysbiosis is associated with elevated serum urate levels. Our study examines the possibility that microbiota dysbiosis may modulate these levels.
Printed electronics on elastomer substrates have found wide applications in wearable devices and soft robotics. For everyday usage, additional requirements exist for the robustness of the printed flexible electrodes, such as the ability to resist scratching and damage. Therefore, highly robust electrodes with self‐healing, and good mechanical strength and stretchability are highly required and challenging. In this paper, a cross‐linking polyurea using polydimethylsiloxane as the soft segment and dynamic urea bonds is prepared and serves as a self‐healing elastomer substrate for coating and printing of silver nanowires (AgNWs). Due to the dynamic exchangeable urea bond at 60 °C, the elastomer exhibits dynamic exchange of the cross‐linking network while retaining the macroscopic shape. As a result, the AgNWs are partially embedded in the surface of the elastomer substrate when coated or printed at 60 °C, forming strong interfacial adhesion. As a result, the obtained stretchable electrode exhibits high mechanical strength and stretchability, the ability to resist scratching and sonication, and self‐healing. This strategy can be applied to a variety of different conducting electrode materials including AgNWs, silver particles, and liquid metal, which provides a new way to prepare robust and self‐healing printed electronics.
ObjectiveTo examine the correlation between dietary selenium (Se) intake and the prevalence of osteoporosis (OP) in the general middle-aged and older population in China.MethodsData for analyses were collected from a population based cross-sectional study performed at the Xiangya Hospital Health Management Centre. Dietary Se intake was evaluated using a validated semi-quantitative food frequency questionnaire. OP was diagnosed on the basis of bone mineral density scans using a compact radiographic absorptiometry system. The correlation between dietary Se intake and the prevalence of OP was primarily examined by multivariable logistic regression.ResultsThis cross-sectional study included a total of 6267 subjects (mean age: 52.2 ± 7.4 years; 42% women), and the prevalence of OP among the included subjects was 9.6% (2.3% in men and 19.7% in women). Compared with the lowest quartile, the energy intake, age, gender and body mass index (BMI)-adjusted odds ratios of OP were 0.72 (95% confidence interval [CI] 0.55–0.94), 0.72 (95% CI 0.51–1.01) and 0.47 (95% CI 0.31–0.73) for the second, third and fourth quartiles of dietary Se intake, respectively (P for trend = 0.001). The results remained consistent in male and female subjects. Adjustment for additional potential confounders (i.e., smoking status, drinking status, physical activity level, nutritional supplements, diabetes, hypertension, fibre intake, and calcium intake) did not cause substantial changes to the results.ConclusionsIn the middle-aged and older humans, participants with lower levels of dietary Se intake have a higher prevalence of OP in a dose-response manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.