The head on quenching of statistically planar turbulent premixed flames by an isothermal inert wall has been analysed using three-dimensional Direct Numerical Simulation (DNS) data for different values of global Lewis number Le(0.8, 1.0 and 1.2) and turbulent Reynolds number Re t . The statistics of head on quenching have been analysed in terms of the wall Peclet number P e (i.e. distance of the flame from the wall normalised by the Zel'dovich flame thickness) and the normalised wall heat flux . It has been found that the maximum (minimum) value of (P e) for the turbulent Le = 0.8 cases are greater (smaller) than the corresponding laminar value, whereas both P e and in turbulent cases remain comparable to the corresponding laminar values for Le = 1.0 and 1.2. Detailed physical explanations are provided for the observed Le dependences of P e and . The existing closure of mean reaction rate蠅 using the scalar dissipation rate (SDR) in the near wall region has been assessed based on a-priori analysis of DNS data and modifications to the existing closures of mean reaction rate and SDR have been suggested to account for the wall effects in such a manner that the modified closures perform well both near to and away from the wall.
A three-dimensional compressible Direct Numerical Simulation (DNS) analysis has been carried out for head-on quenching of a statistically planar stoichiometric methaneair flame by an isothermal inert wall. A multi-step chemical mechanism for methane-air combustion is used for the purpose of detailed chemistry DNS. For head-on quenching of stoichiometric methane-air flames, the mass fractions of major reactant species such as methane and oxygen tend to vanish at the wall during flame quenching. The absence of OH at the wall gives rise to accumulation of carbon monoxide during flame quenching because CO cannot be oxidised anymore. Furthermore, it has been found that low-temperature reactions give rise to accumulation of HO 2 and H 2 O 2 at the wall during flame quenching. Moreover, these low temperature reactions are responsible for non-zero heat release rate at the wall during flame-wall interaction. In order to perform an in-depth comparison between simple and detailed chemistry DNS results, a corresponding simulation has been carried out for the same turbulence parameters for a representative single-step Arrhenius type irreversible chemical mechanism. In the corresponding simple chemistry simulation, heat release rate vanishes once the flame reaches a threshold distance from the wall. The distributions of reaction progress variable c and non-dimensional temperature T are found to be identical to each other away from the wall for the simple chemistry simulation but this equality does not hold during head-on quenching. The inequality between c (defined based on CH 4 mass fraction) and T holds both away from and close to the wall for the detailed chemistry simulation but it becomes particularly prominent in the near-wall region. The temporal evolutions of wall heat flux and wall Peclet number (i.e. normalised wall-normal distance of T = 0.9 isosurface) for both simple and detailed chemistry laminar and turbulent cases have been found to be qualitatively similar. However, small differences have been observed in the numerical values of the maximum normalised wall heat flux magnitude ( max ) L and the minimum Peclet number (P e min ) L obtained from simple and detailed chemistry based laminar head-on quenching calculations. Detailed explanations have been provided for the observed differences in behaviours of ( max ) L and (P e min ) L . The usual Flame Surface Density (FSD) and scalar dissipation rate (SDR) based reaction rate closures do not adequately predict the mean reaction rate of reaction progress variable in the near-wall region for both simple and detailed chemistry simulations. It has been found that recently proposed FSD and SDR based reaction rate closures based on a-priori DNS analysis of simple chemistry data perform satisfactorily also for the detailed chemistry case both away from and close to the wall without any adjustment to the model parameters.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence Newcastle University ePrints -eprint.ncl.ac.uk Lai J, Chakraborty N, Lipatnikov AN. Statistical behaviour of vorticity and enstrophy transport in head-on quenching of turbulent premixed flames.
Multiscale analysis of wall-bounded turbulent premixed flames is performed using three-dimensional direct numerical simulation (DNS) data of flame-wall interaction (FWI). The chosen configuration represents head-on quenching of a turbulent statistically planar stoichiometric methane-air flame by an isothermal inert wall. Different turbulence intensities and chemical mechanism have been analysed. A bandpass filtering technique is utilised to analyse the influence of turbulent eddies of varying size and the statistics of vorticity and strain rate fields associated with them. It is found that the presence of the flame does not alter the mechanism of vortex stretching in turbulent flows when the flame is away from the wall, but in the case of FWI, the mechanism of vortex stretching is altered due to a reduction in the contribution from non-local strain, and the small scales of turbulence start to contribute to flame straining process. The results indicate that small scale eddies do not contribute to the tangential strain rate when the flames are away from the walls, whereas the contribution from the small scales to the tangential strain rate increases when the flame is in the vicinity of the wall. It is also found that the choice of chemical mechanism does not influence the underlying fluid mechanical processes involved in flame-wall interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright 漏 2024 scite LLC. All rights reserved.
Made with 馃挋 for researchers
Part of the Research Solutions Family.