A unique morphology of SrTiO3 nanocubes precipitated on TiO2 nanowires is successfully synthesized in the form of a thin‐film heterojunctioned TiO2/SrTiO3 photocatalyst using facile hydrothermal techniques. The formation mechanisms of the synthesized photocatalysts are meticulously studied and described. Growth of SrTiO3 single crystal nanocubes (≈50 nm in width) on anatase polycrystalline nanowires follows an in situ dissolution‐precipitation pathway. This is consonant with the classic LaMer model. By analyzing the results of field emission scanning electron microscopy (FESEM), field emission transmission electron microscopy (FETEM), X‐ray diffraction (XRD), energy dispersive X‐ray (EDX) spectroscopy, X‐ray photoelectron spectroscopy (XPS), and UV‐vis spectrophotometry, a comprehensive structural and morphological characterization of the photocatalysts is established. FESEM images reveal that the anatase film comprises mainly of nanowires bristles while the tausonite film is primarily made up of nanocube aggregations. In comparison to the respective pristine semiconductor photocatalysts, the heterostructured photocatalyst demonstrates the highest efficiency in photocatalytic splitting of water to produce H2, 4.9 times that of TiO2 and 2.1 times that of SrTiO3. The enhanced photocatalytic efficiency is largely attributed to the efficient separation of photogenerated charges at heterojunctions of the two dissimilar semiconductors, as well as a negative redox potential shift in the Fermi level.
A novel, multifunctional TiO2 nanowire ultrafiltration (UF) membrane with a layered hierarchical structure is made via alkaline hydrothermal synthesis, followed by a filtration and hot‐press process. The TiO2 UF membrane has high surface porosity (21.3%) and pore size values around 20 nm. The membrane possesses multifunctional capabilities under UV irradiation, such as anti‐fouling, anti‐bacterial, concurrent separation, and photocatalytic oxidation. The unique properties of the membrane indicate its potential in applications for environmental purification.
Misfolding of Amyloid β (Aβ) peptides leads to the formation of extracellular amyloid plaques. Molecular chaperones can facilitate the refolding or degradation of such misfolded proteins. Here, for the first time, we report the unique ability of Lipocalin-type Prostaglandin D synthase (L-PGDS) protein to act as a disaggregase on the pre-formed fibrils of Aβ(1–40), abbreviated as Aβ40, and Aβ(25–35) peptides, in addition to inhibiting the aggregation of Aβ monomers. Furthermore, our proteomics results indicate that L-PGDS can facilitate extraction of several other proteins from the insoluble aggregates extracted from the brain of an Alzheimer’s disease patient. In this study, we have established the mode of binding of L-PGDS with monomeric and fibrillar Aβ using Nuclear Magnetic Resonance (NMR) Spectroscopy, Small Angle X-ray Scattering (SAXS), and Transmission Electron Microscopy (TEM). Our results confirm a direct interaction between L-PGDS and monomeric Aβ40 and Aβ(25–35), thereby inhibiting their spontaneous aggregation. The monomeric unstructured Aβ40 binds to L-PGDS via its C-terminus, while the N-terminus remains free which is observed as a new domain in the L-PGDS-Aβ40 complex model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.