Abbreviations: ALK, anaplastic lymphoma receptor tyrosine kinase; ATF4, activating transcription factor 4; BNIP3, BCL2/adenovirus E1B 19kDa interacting protein 3; CNTF, ciliary neurotrophic factor; COX8, cytochrome c oxidase subunit VIII; ConA, concanavalin A; CTSB, cathepsin B; CTSL, cathepsin L; CuB, cucurbitacin B; CYCS, cytochrome c, somatic; EGF, epidermal growth factor; EIF2A, eukaryotic initiation factor 2A, 65kDa; EIF2AK2, eukaryotic translation initiation factor 2-a kinase 2; ER, endoplasmic reticulum; ETC, electron transport chain; FOXO1/3, forkhead box O1/3; HDAC3, histone deacetylase 3; HIF1A, hypoxia inducible factor 1, a subunit (basic helix-loop-helix transcription factor); IL6, interleukin 6; IMM, inner mitochondrial membrane; KDR, kinase insert domain receptor; LMP, lysosomal membrane permeabilization; MAPK1, mitogen-activated protein kinase 1; MAP1LC3A, microtubule-associated protein 1 light chain 3 a; miRNA, microRNA; mitoSTAT3, mitochondrial STAT3; MLS, mitochondrial localization sequence; MMP14, matrix metallopeptidase 14 (membrane-inserted); NDUFA13, NADH dehydrogenase (ubiquinone) 1 a subcomplex, 13; NES, nuclear export signal; NFKB1, nuclear factor of kappa light polypeptide gene enhancer in B-cells 1; NLS, nuclear localization signal; PDGFRB, platelet-derived growth factor receptor, b polypeptide; PRKAA2, protein kinase, AMP-activated, a 2 catalytic subunit; PTPN2, protein tyrosine phosphatase, non-receptor type 2; PTPN6, protein tyrosine phosphatase, non-receptor type 6; PTPN11, protein tyrosine phosphatase, non-receptor type 11; ROS, reactive oxygen species; RTK, receptor tyrosine kinases; SH2, src homology 2; STAT3, signal transducer and activator of transcription 3 (acute-phase response factor); VHL, von Hippel-Lindau tumor suppressor, E3 ubiquitin protein ligase; XPO1, exportin 1.Autophagy is an evolutionarily conserved process in eukaryotes that eliminates harmful components and maintains cellular homeostasis in response to a series of extracellular insults. However, these insults may trigger the downstream signaling of another prominent stress responsive pathway, the STAT3 signaling pathway, which has been implicated in multiple aspects of the autophagic process. Recent reports further indicate that different subcellular localization patterns of STAT3 affect autophagy in various ways. For example, nuclear STAT3 fine-tunes autophagy via the transcriptional regulation of several autophagy-related genes such as BCL2 family members, BECN1, PIK3C3, CTSB, CTSL, PIK3R1, HIF1A, BNIP3, and microRNAs with targets of autophagy modulators. Cytoplasmic STAT3 constitutively inhibits autophagy by sequestering EIF2AK2 as well as by interacting with other autophagy-related signaling molecules such as FOXO1 and FOXO3. Additionally, the mitochondrial translocation of STAT3 suppresses autophagy induced by oxidative stress and may effectively preserve mitochondria from being degraded by mitophagy. Understanding the role of STAT3 signaling in the regulation of autophagy may provide insight into the cla...
Since nuclear factor of activated T cells (NFAT) was first identified as a transcription factor in T cells, various NFAT isoforms have been discovered and investigated. Accumulating studies have suggested that NFATs are involved in many aspects of cancer, including carcinogenesis, cancer cell proliferation, metastasis, drug resistance and tumor microenvironment. Different NFAT isoforms have distinct functions in different cancers. The exact function of NFAT in cancer or the tumor microenvironment is context dependent. In this review, we summarize our current knowledge of NFAT regulation and function in cancer development and treatment. NFATs have emerged as a potential target for cancer prevention and therapy.
Autophagy is an evolutionarily conserved survival pathway in eukaryote and is frequently upregulated in cancer cells after chemotherapy or targeted therapy. Thus induction of autophagy has emerged as a drug resistance mechanism. In this study, we found that crizotinib induced a high level of autophagy in lung cancer cells through inhibition of STAT3. Ectopic expression of wild-type or constitutive activated STAT3 significantly suppressed the effect of crizotinib on autophagy. Interestingly, crizotinibmediated inhibition of STAT3 is in a step-wise manner. Firstly it inhibited cytoplasmic STAT3, which leads to the phosphorylation of EIF2A, then inhibited nuclear STAT3, which leads to the downregulation of BCL-2. Cell death induced by crizotinib was greatly enhanced after the inhibition of autophagy by the pharmacological inhibitors or shRNAs against Beclin-1. Moreover, the autophagy inhibitor HCQ significantly augmented the anti-tumor effect of crizotinib in a mouse xenograft model. In conclusion, crizotinib can induce cytoprotective autophagy by suppression of STAT3 in lung cancer cells. Thus, autophagy inhibition represents a promising approach to improve the efficacy of crizotinib in the treatment of targeted lung cancer patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.