Huntington’s disease (HD) is a fatal neurodegenerative disorder caused by an expanded polyglutamine repeat in huntingtin (Htt) protein. Current management strategies temporarily relieve disease symptoms, but fail to affect the underlying disease progression. We previously demonstrated that calorie restriction ameliorated HD pathogenesis and slowed disease progression in HD mice1. We now report that overexpression of SIRT1, a mediator of beneficial metabolic effects of calorie restriction, protects neurons against mutant Htt toxicity, whereas reduction of SIRT1 exacerbates mutant Htt toxicity. Overexpression of SIRT1 significantly improves motor function, reduces brain atrophy, and attenuates mutant Htt-mediated metabolic abnormalities in both fragment and full-length HD mouse models. Further mechanistic studies suggest that SIRT1 prevents mutant Htt-induced decline in BDNF levels and its receptor Trk-B signaling, and restores medium spiny neuronal DARPP32 levels in the striatum. SIRT1 deacetylase activity is required for SIRT1-mediated neuroprotection in HD models. Notably, we demonstrate that mutant Htt interacts with SIRT1 and inhibits SIRT1 deacetylase activity. Inhibition of SIRT1 deacetylase activity results in hyperacetylation of SIRT1 substrates such as FOXO3a thereby inhibiting its prosurvival function. Overexpression of SIRT1 counteracts mutant Htt-induced deacetylase deficit, enhances deacetylation of FOXO3a, and facilitates cell survival. These findings demonstrate a neuroprotective role of SIRT1 in mammalian HD models, indicate key mediators of this protection, and open new avenues for the development of neuroprotective strategies in HD.
BackgroundDeep brain stimulation (DBS) of either the subthalamic nucleus (STN) or the globus pallidus interna (GPi) can reduce motor symptoms in patients with Parkinson’s disease (PD) and improve their quality of life. However, the effects of STN DBS and GPi DBS on cognitive functions and their psychiatric effects remain controversial. The present meta-analysis was therefore performed to clarify these issues.MethodsWe searched the PUBMED, EMBASE, and the Cochrane Central Register of Controlled Trials databases. Other sources, including internet-based clinical trial registries and grey literature sources, were also searched. After searching the literature, two investigators independently performed literature screens to assess the quality of the included trials and to extract the data. The outcomes included the effects of STN DBS and GPi DBS on multiple cognitive domains, depression, anxiety, and quality of life.ResultsSeven articles related to four randomized controlled trials that included 521 participants were incorporated into the present meta-analysis. Compared with GPi DBS, STN DBS was associated with declines in selected cognitive domains after surgery, including attention, working memory and processing speed, phonemic fluency, learning and memory, and global cognition. However, there were no significant differences in terms of quality of life or psychiatric effects, such as depression and anxiety, between the two groups.ConclusionsA selective decline in frontal-subcortical cognitive functions is observed after STN DBS in comparison with GPi DBS, which should not be ignored in the target selection for DBS treatment in PD patients. In addition, compared to GPi DBS, STN DBS does not affect depression, anxiety, and quality of life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.