We study the incompressible limit of the compressible nonisentropic Hookean elastodynamics with general initial data in the whole space [Formula: see text]. First, we obtain the uniform estimates of the solutions in [Formula: see text] for s > d/2 + 1 being even and the existence of classic solutions on a time interval independent of the Mach number. Then, we prove that the solutions converge to the incompressible elastodynamic equations as the Mach number tends to zero.
The low Mach number limit of the nonisentropic compressible Hookean elastodynamic equations is rigorously proved with respect to well-prepared initial data. We introduce certain suitable seminorms to obtain the uniform estimate of solutions, for which the critical point is to cancel the higher order derivate terms caused by the coupling of velocity and deformation gradient.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.