Fast radio bursts (FRBs) are highly dispersed radio bursts prevailing in the universe [1][2][3] . The recent detection of FRB 200428 from a Galactic magnetar [4][5][6][7][8] suggested that at least some FRBs originate from magnetars, but it is unclear whether the majority of cosmological FRBs, especially the actively repeating ones, are produced from the magnetar channel. Here we report the detection of 1863 polarised bursts from the repeating source FRB 20201124A 9 during a dedicated radio observational campaign of Five-hundred-meter Aperture Spherical radio Telescope (FAST). The large sample of radio bursts detected in 88 hr over 54 days indicate a significant, irregular, short-time variation of the Faraday rotation measure (RM) of the source during the first 36 days, followed by a constant RM during the later 18 days. Significant circular polarisation up to 75% was observed in a good fraction of bursts. Evidence suggests that some low-level circular polarisation originates from the conversion from linear polarisation during the propagation of the radio waves, but an intrinsic radiation mechanism is required to produce the higher degree of circular polarisation. All of these features provide evidence for a more complicated, dynamically evolving, magnetised immediate environment around this FRB source. Its host galaxy was previously known 10-12 . Our optical observations reveal that it is a Milky-Way-sized, metal-rich, barred-spiral galaxy at redshift z = 0.09795 ± 0.00003, with the FRB source residing in a low stellar density, interarm region
We report the properties of more than 600 bursts including cluster-bursts detected from the repeating fast radio burst (FRB) source FRB 20201124A with the Five-hundred-meter Aperture Spherical radio Telescope (FAST) during an extremely active episode on UTC September 25-28, 2021, in a series of four papers. The observations were carried out in the band of 1.0 - 1.5~GHz by using the center beam of the L-band 19-beam receiver. We monitored the source in sixteen 1-hour sessions and one 3-hour session spanning 23 days. All the bursts were detected during the first four days. In this first paper of the series, we perform a detailed morphological study of 624 bursts using the 2-dimensional frequency-time “waterfall'' plots, with a burst (or cluster- burst) defined as an emission episode during which the adjacent emission peaks have a separation shorter than 400. The duration of a burst is therefore always longer than 1 ms, with the longest up to more than 120 ms. The emission spectra of the sub-bursts are typically narrow within the observing band with a characteristic width of ~277 MHz. The center frequency distribution has a dominant peak at about 1091.9 MHz and a secondary weak peak around 1327.9 MHz. Most bursts show a frequency-downward-drifting pattern. Based on the drifting patterns, we classify the bursts into five main categories: downward drifting (263) bursts, upward drifting (3) bursts, complex (203), no drifting (35) bursts, and no evidence for drifting (121) bursts. Subtypes are introduced based on the emission frequency range in the band (low, middle, high and wide) as well as the number of components in one burst (1, 2, or multiple). We measured a varying scintillation bandwidth from about 0.5~MHz at 1.0~GHz to 1.4~MHz at 1.5~GHz with a spectral index of 3.0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.