The large-scale magnetic field of our Galaxy can be probed in three dimensions using Faraday rotation of pulsar signals. We report on the determination of 223 rotation measures from polarization observations of relatively distant southern pulsars made using the Parkes radio telescope. Combined with previously published observations these data give clear evidence for large-scale counterclockwise fields (viewed from the north Galactic pole) in the spiral arms interior to the Sun and weaker evidence for a counterclockwise field in the Perseus arm. However, in interarm regions, including the Solar neighbourhood, we present evidence that suggests that large-scale fields are clockwise. We propose that the large-scale Galactic magnetic field has a bisymmetric structure with reversals on the boundaries of the spiral arms. Streaming motions associated with spiral density waves can directly generate such a structure from an initial inwardly directed radial field. Large-scale fields increase toward the Galactic Center, with a mean value of about 2 µG in the Solar neighbourhood and 4 µG at a Galactocentric radius of 3 kpc. Frick et al. 2001). Faraday rotation gives a measure of the line-of-sight component of the magnetic field. Extragalactic sources have the advantage of large numbers but pulsars have the advantage of being spread through the Galaxy at approximately known distances, allowing direct three-dimensional mapping of the field. Pulsars also give a direct estimate of the strength of the field through normalisation by the dispersion measure (DM). The rotation measure (RM) is defined by φ = RM λ 2where φ is the position angle in radians of linearly polarised radiation relative to its infinite-frequency (λ = 0) value and λ is its wavelength (in m). For a pulsar at distance D (in pc), the RM (in rad m −2 ) is given by RM = 0.810
Using the photometric redshifts of galaxies from the Sloan Digital Sky Survey III (SDSS-III), we identify 132,684 clusters in the redshift range of 0.05 ≤ z < 0.8. Monte Carlo simulations show that the false detection rate is less than 6% for the whole sample. The completeness is more than 95% for clusters with a mass of M 200 > 1.0 × 10 14 M ⊙ in the redshift range of 0.05 ≤ z < 0.42, while clusters of z > 0.42 are less complete and have a biased smaller richness than the real one due to incompleteness of member galaxies. We compare our sample with other cluster samples, and find that more than 90% of previously known rich clusters of 0.05 ≤ z < 0.42 are matched with clusters in our sample. Richer clusters tend to have more luminous brightest cluster galaxies (BCGs). Correlating with X-ray and the Planck data, we show that the cluster richness is closely related to the X-ray luminosity, temperature, and Sunyaev-Zel'dovich measurements. Comparison of the BCGs with the SDSS luminous red galaxy (LRG) sample shows that 25% of LRGs are BCGs of our clusters and 36% of LRGs are cluster member galaxies. In our cluster sample, 63% of BCGs of r petro < 19.5 satisfy the SDSS LRG selection criteria.
We have obtained 63 rotation measures (RMs) from polarization observations of southern pulsars, of which 54 are new measurements and 3 are varied from previous values. The new pulsar RM data at high Galactic latitudes are mostly consistent with the antisymmetric RM distribution found previously. For the Galactic disc, evidence for a field reversal near the Perseus arm, and possibly another beyond it, is presented. Inside the Solar Circle, in addition to the two known field reversals in or near the Carina-Sagittartus arm and the Crux-Scutum arm, a further reversal in the Norma arm is tentatively identified. These reversals, together with the pitch angle derived from pulsar RM and stellar polarization distributions, are consistent with bisymmetric spiral (BSS) models for the large-scale magnetic field structure in the disc of our Galaxy. However, discrimination between models is complicated by the presence of smaller-scale irregularities in the magnetic field, as well as uncertainties in the theoretical modelling.Comment: 10pages; 8 figures; Accepted by MNRA
Context. The spiral structure of the Milky Way is not yet well determined. The keys to understanding this structure are to increase the number of reliable spiral tracers and to determine their distances as accurately as possible. HII regions, giant molecular clouds (GMCs), and 6.7 GHz methanol masers are closely related to high mass star formation, and hence they are excellent spiral tracers. The distances for many of them have been determined in the literature with trigonometric, photometric, and/or kinematic methods. Aims. We update the catalogs of Galactic HII regions, GMCs, and 6.7 GHz methanol masers, and then outline the spiral structure of the Milky Way. Methods. We collected data for more than 2500 known HII regions, 1300 GMCs, and 900 6.7 GHz methanol masers. If the photometric or trigonometric distance was not yet available, we determined the kinematic distance using a Galaxy rotation curve with the current IAU standard, R 0 = 8.5 kpc and Θ 0 = 220 km s −1 , and the most recent updated values of R 0 = 8.3 kpc and Θ 0 = 239 km s −1 , after velocities of tracers are modified with the adopted solar motions. With the weight factors based on the excitation parameters of HII regions or the masses of GMCs, we get the distributions of these spiral tracers.Results. The distribution of tracers shows at least four segments of arms in the first Galactic quadrant, and three segments in the fourth quadrant. The Perseus Arm and the Local Arm are also delineated by many bright HII regions. The arm segments traced by massive star forming regions and GMCs are able to match the HI arms in the outer Galaxy. We found that the models of three-arm and four-arm logarithmic spirals are able to connect most spiral tracers. A model of polynomial-logarithmic spirals is also proposed, which not only delineates the tracer distribution, but also matches the observed tangential directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.