Using the photometric redshifts of galaxies from the Sloan Digital Sky Survey III (SDSS-III), we identify 132,684 clusters in the redshift range of 0.05 ≤ z < 0.8. Monte Carlo simulations show that the false detection rate is less than 6% for the whole sample. The completeness is more than 95% for clusters with a mass of M 200 > 1.0 × 10 14 M ⊙ in the redshift range of 0.05 ≤ z < 0.42, while clusters of z > 0.42 are less complete and have a biased smaller richness than the real one due to incompleteness of member galaxies. We compare our sample with other cluster samples, and find that more than 90% of previously known rich clusters of 0.05 ≤ z < 0.42 are matched with clusters in our sample. Richer clusters tend to have more luminous brightest cluster galaxies (BCGs). Correlating with X-ray and the Planck data, we show that the cluster richness is closely related to the X-ray luminosity, temperature, and Sunyaev-Zel'dovich measurements. Comparison of the BCGs with the SDSS luminous red galaxy (LRG) sample shows that 25% of LRGs are BCGs of our clusters and 36% of LRGs are cluster member galaxies. In our cluster sample, 63% of BCGs of r petro < 19.5 satisfy the SDSS LRG selection criteria.
Clusters of galaxies in most previous catalogs have redshifts z ≤ 0.3. Using the photometric redshifts of galaxies from the Sloan Digital Sky Survey Data Release 6 (SDSS DR6), we identify 39,668 clusters in the redshift range 0.05 < z < 0.6 with more than eight luminous (M r ≤ −21) member galaxies. Cluster redshifts are estimated accurately with an uncertainty less than 0.022. The contamination rate of member galaxies is found to be roughly 20%, and the completeness of member galaxy detection reaches to ∼90%. Monte Carlo simulations show that the cluster detection rate is more than 90% for massive (M 200 > 2 × 10 14 M ⊙ ) clusters of z ≤ 0.42. The false detection rate is ∼5%. We obtain the richness, the summed luminosity, and the gross galaxy number within the determined radius for identified clusters. They are tightly related to the X-ray luminosity and temperature of clusters. Cluster mass is related to the richness and summed luminosity with M 200 ∝ R 1.90±0.04 and M 200 ∝ L 1.64±0.03 r , respectively. In addition, 685 new candidates of X-ray clusters are found by cross-identification of our clusters with the source list of the ROSAT X-ray survey.
Post-starbursts are galaxies in transition from the blue cloud to the red sequence. Although they are rare today, integrated over time they may be an important pathway to the red sequence. This work uses Sloan Digital Sky Survey, the Galaxy Evolution Explorer, and Wide-field Infrared Survey Explorer observations to identify the evolutionary sequence from starbursts to fully quenched post-starbursts (QPSBs) in the narrow mass range log M(M ) = 10.3-10.7, and identifies "transiting" post-starbursts (TPSBs) which are intermediate between these two populations. In this mass range, ∼0.3% of galaxies are starbursts, ∼0.1% are QPSBs, and ∼0.5% are the transiting types in between. The TPSBs have stellar properties that are predicted for fast-quenching starbursts and morphological characteristics that are already typical of early-type galaxies. The active galactic nucleus (AGN) fraction, as estimated from optical line ratios, of these post-starbursts is about three times higher ( 36% ± 8%) than that of normal star forming galaxies of the same mass, but there is a significant delay between the starburst phase and the peak of nuclear optical AGN activity (median age difference of 200 ± 100 Myr), in agreement with previous studies. The time delay is inferred by comparing the broadband near-NUV-to-optical photometry with stellar population synthesis models. We also find that starbursts and post-starbursts are significantly more dust obscured than normal star forming galaxies in the same mass range. About 20% of the starbursts and 15% of the TPSBs can be classified as "dust-obscured galaxies" (DOGs), with a near-UV-to-mid-IR flux ratio of 900, while only 0.8% of normal galaxies are DOGs. The time delay between the starburst phase and AGN activity suggests that AGNs do not play a primary role in the original quenching of starbursts but may be responsible for quenching later low-level star formation by removing gas and dust during the post-starburst phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.