Background
Successful preclinical transplantations of porcine hearts into baboon recipients are required before commencing clinical trials. Despite years of research, over half of the orthotopic cardiac xenografts were lost during the first 48 hours after transplantation, primarily caused by perioperative cardiac xenograft dysfunction (PCXD). To decrease the rate of PCXD, we adopted a preservation technique of cold non‐ischemic perfusion for our ongoing pig‐to‐baboon cardiac xenotransplantation project.
Methods
Fourteen orthotopic cardiac xenotransplantation experiments were carried out with genetically modified juvenile pigs (GGTA1‐ KO/hCD46/hTBM) as donors and captive‐bred baboons as recipients. Organ preservation was compared according to the two techniques applied: cold static ischemic cardioplegia (IC; n = 5) and cold non‐ischemic continuous perfusion (CP; n = 9) with an oxygenated albumin‐containing hyperoncotic cardioplegic solution containing nutrients, erythrocytes and hormones. Prior to surgery, we measured serum levels of preformed anti‐non‐Gal‐antibodies. During surgery, hemodynamic parameters were monitored with transpulmonary thermodilution. Central venous blood gas analyses were taken at regular intervals to estimate oxygen extraction, as well as lactate production. After surgery, we measured troponine T and serum parameters of the recipient’s kidney, liver and coagulation functions.
Results
In porcine grafts preserved with IC, we found significantly depressed systolic cardiac function after transplantation which did not recover despite increasing inotropic support. Postoperative oxygen extraction and lactate production were significantly increased. Troponin T, creatinine, aspartate aminotransferase levels were pathologically high, whereas prothrombin ratios were abnormally low. In three of five IC experiments, PCXD developed within 24 hours. By contrast, all nine hearts preserved with CP retained fully preserved systolic function, none showed any signs of PCXD. Oxygen extraction was within normal ranges; serum lactate as well as parameters of organ functions were only mildly elevated. Preformed anti‐non‐Gal‐antibodies were similar in recipients receiving grafts from either IC or CP preservation.
Conclusions
While standard ischemic cardioplegia solutions have been used with great success in human allotransplantation over many years, our data indicate that they are insufficient for preservation of porcine hearts transplanted into baboons: Ischemic storage caused severe impairment of cardiac function and decreased tissue oxygen supply, leading to multi‐organ failure in more than half of the xenotransplantation experiments. In contrast, cold non‐ischemic heart preservation with continuous perfusion reliably prevented early graft failure. Consistent survival in the perioperative phase is a prerequisite for preclinical long‐term results after cardiac xenotransplantation.
Objective
The treatment of acetabular defects is one of the most difficult challenges of revision of total hip arthroplasty (RTHA), and tantalum is regarded as a promising bone substitute material. This study aims to investigate the effectiveness of 3D printed acetabular augment used in RTHA for the treatment of acetabular bone defect.
Methods
A retrospective analysis of the clinical data of seven patients who had undergone RTHA was carried out using 3D printed acetabular augment from January 2017 to December 2018. The CT data of the patients were exported to Mimics 21.0 software (Materialise, Leuven, Belgium), and the acetabular bone defect augment were designed, printed and then implanted during operation. The postoperative Harris score, visual analogue scale (VAS) score and prosthesis position were observed to evaluate the clinical outcome. A I‐test was used for preoperative and postoperative comparison of the paired‐design dataset.
Results
A firm attachment of the bone augment to the acetabulum during operation without any complications was found during the follow‐up time 2.8–4.3 years. The VAS score of all patients was found 6.9 ± 1.4 before operation and was 0.7 ± 0.7 at the last follow‐up (
P
≤ 0.001), and the Harris hip scores, were 31.9 ± 10.3 and 73.3 ± 12.8 before operation, and at the last follow‐up (
P
≤ 0.001), respectively. Moreover, no loosening sign between the bone defect augment and the acetabulum was observed during the entire implantation period.
Conclusion
3D printed acetabular augment is effective in reconstructing the acetabulum following an acetabular bone defect revision, which enhances the hip joint function and eventually makes a satisfactory stable prosthetic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.