The development of conjugated polymers with high semiconducting performance and high reliability is of great significance for flexible electronics. Herein, we developed a new type of electron-accepting building block; i.e., non-symmetric half-fused B ! N coordinated diketopyrrolopyrrole (DPP) (HBNDPP), for amorphous conjugated polymers toward flexible electronics. The rigid B ! N fusion part of HBNDPP endows the resulting polymers with decent electron transport, while its non-symmetric structure causes the polymer to exhibit multiple conformation isomers with flat torsional potential energies. Thus, it gets packed in an amorphous manner in solid state, ensuring good resistance to bending strain. Combined with hardness and softness, the flexible organic field-effect transistor devices exhibit n-type charge properties with decent mobility, good bending resistance, and good ambient stability. The preliminary study makes this building block a potential candidate for future design of conjugated materials for flexible electronic devices.
The development of conjugated polymers with high semiconducting performance and high reliability is of great significance for flexible electronics. Herein, we developed a new type of electron-accepting building block; i.e., non-symmetric half-fused B ! N coordinated diketopyrrolopyrrole (DPP) (HBNDPP), for amorphous conjugated polymers toward flexible electronics. The rigid B ! N fusion part of HBNDPP endows the resulting polymers with decent electron transport, while its non-symmetric structure causes the polymer to exhibit multiple conformation isomers with flat torsional potential energies. Thus, it gets packed in an amorphous manner in solid state, ensuring good resistance to bending strain. Combined with hardness and softness, the flexible organic field-effect transistor devices exhibit n-type charge properties with decent mobility, good bending resistance, and good ambient stability. The preliminary study makes this building block a potential candidate for future design of conjugated materials for flexible electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.