Heteropoly acids containing Brønsted and Lewis acids show excellent catalytic activity. Brønsted acids promote the depolymerization of polysaccharides (such as starch and cellulose) into glucose, while Lewis acids catalyze the conversion of glucose to 5-hydroxymethylfurfural (HMF). Designing stable Brønsted-Lewis acid-containing bifunctional heterogeneous catalysts is crucial for the efficient catalytic conversion of polysaccharides to HMF. In this study, a series of Brønsted -Lewis acid bifunctional catalysts (SnxPW, X = 0.10–0.75) were investigated for the conversion of cassava starch to HMF. The structure of the catalysts was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Pyridine Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. The acid strength and acid capacity were also investigated. The effects of reaction time, temperature, catalyst concentration, and cassava starch concentration on the selectivity, conversion rate, and yield were examined. The results showed that, among the analyzed catalysts, Sn0.1PW presented the best ability under the test conditions for catalyzing the conversion of starch to HMF. At the optimized conditions of a reaction temperature of 160°C, a catalyst dosage of 0.50 mmol/gstarch, and a 1 h reaction time, the starch conversion rate was 90.61%, and the selectivity and yield of HMF were 59.77 and 54.12%, respectively. Our findings contribute to the development of HMF production by the dehydration of carbohydrates.
This study focused on the feasibility of using Fe 3 O 4 /graphene oxide (FGO) nanocomposites as heterogeneous catalysts for the advanced treatment of real industrial wastewater. FGO nanocomposites with different graphene oxide (GO) ratios were synthesized by co-precipitating iron salts onto GO sheets in basic solution. Characterization of the resulting material structures and functionalities was performed using a range of analytical techniques. A low GO loading afforded a good Fe 3 O 4 nanoparticle dispersibility and resulted in a higher Brunauer-Emmett-Teller surface area and pore volume. The FGO nanocomposites and pure Fe 3 O 4 were used to treat papermaking wastewater in a heterogeneous photo-Fenton process. The results suggested that the nanocomposite designated FGO1 (GO loading of 25 mg) exhibits a higher photocatalytic e ciency than other FGO nanocomposites and pure Fe 3 O 4 . A maximum chemical oxygen demand degradation e ciency of 89.6% was achieved in 80 min with 1.5 g.L − 1 FGO1 at pH 3. The degradation of different pollutants present in wastewater was evaluated with the aid of gas chromatography-mass spectrometry and 3D excitation-emission-matrix analysis. Inductively coupled plasma atomic emission spectroscopy and magnetic measurements con rmed that the FGO1 nanocomposites possess a low iron leachability and a high reusability. Thus, a comprehensive advanced treatment of real industrial wastewater using a magnetic FGO catalyst is demonstrated.
This study focused on the feasibility of using Fe3O4/graphene oxide (FGO) nanocomposites as heterogeneous catalysts for the advanced treatment of real industrial wastewater. FGO nanocomposites with different graphene oxide (GO) ratios were synthesized by co-precipitating iron salts onto GO sheets in basic solution. Characterization of the resulting material structures and functionalities was performed using a range of analytical techniques. A low GO loading afforded a good Fe3O4 nanoparticle dispersibility and resulted in a higher Brunauer–Emmett–Teller surface area and pore volume. The FGO nanocomposites and pure Fe3O4 were used to treat papermaking wastewater in a heterogeneous photo-Fenton process. The results suggested that the nanocomposite designated FGO1 (GO loading of 25 mg) exhibits a higher photocatalytic efficiency than other FGO nanocomposites and pure Fe3O4. A maximum chemical oxygen demand degradation efficiency of 89.6% was achieved in 80 min with 1.5 g.L− 1 FGO1 at pH 3. The degradation of different pollutants present in wastewater was evaluated with the aid of gas chromatography–mass spectrometry and 3D excitation–emission-matrix analysis. Inductively coupled plasma atomic emission spectroscopy and magnetic measurements confirmed that the FGO1 nanocomposites possess a low iron leachability and a high reusability. Thus, a comprehensive advanced treatment of real industrial wastewater using a magnetic FGO catalyst is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.