We designed and fabricated a Mach–Zehnder interferometer (MZI) thermo-optic switch with an inverted triangular waveguide. The inverted triangular waveguide achieves a fundamental mode in a large waveguide dimension, which can reduce the coupling loss and increase the extinction ratio. The triangular waveguide-based switch was simulated and presented higher heating efficiency and lower power consumption than that of the traditional rectangular waveguide-based switch. Compared with the traditional rectangular waveguide-based device, the power consumption of the proposed device is reduced by 60%. Spacing photobleaching was introduced to fabricate the inverted triangular waveguide and adjust the refractive index to minimize the mode number. The insertion loss of the typical fabricated device with a 2 cm length is about 7.8 dB. The device shows an extinction ratio of
∼
8.1
d
B
at 532 nm with a very low power consumption of 2.2 mW, and the switching rise time and fall time are 110 and 130 µs, respectively. The proposed single-mode waveguide and low-power-consumption optical switch have great potential applications in visible optical communication fields such as wavelength division multiplexing and mode-division multiplexing.
This paper presents a novel electrode thermal writing waveguide based on a heating-induced refractive index change mechanism. The mode condition and the electrode thermal writing parameters were optimized, and the output patterns of the optical field were obtained in a series of simulations. Moreover, the effect of various adjustments on the sensing range of the nanoimprint M–Z temperature sensor was analyzed theoretically. A refractive index asymmetry Mach–Zehnder (M–Z) waveguide sensor with a tunable refractive index for a waveguide core layer was simulated with a length difference of 946.1 µm. The optimal width and height of the invert ridge waveguide were 2 μm and 2.8 μm, respectively, while the slab thickness was 1.2 μm. The sensing accuracy was calculated to range from 2.0896 × 104 to 5.1252 × 104 in the 1.51–1.54 region. The sensing fade issue can be resolved by changing the waveguide core refractive index to 0.001 via an electrode thermal writing method. Thermal writing a single M–Z waveguide arm changes its refractive index by 0.03. The sensor’s accuracy can be improved 1.5 times by the proposed method. The sensor described in this paper shows great prospects in organism temperature detection, molecular analysis, and biotechnology applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.