Emerging evidence suggests amniotic epithelial cells (AECs) as a promising source of progenitor cells in regenerative medicine and bone tissue engineering. However, investigations comparing the regenerative properties of AECs with other sources of stem cells are particularly needed before the feasibility of AECs in bone tissue engineering can be determined. This study aimed to compare human amniotic epithelial cells (hAECs), human bone marrow mesenchymal stem cells (hBMSCs), and human amniotic fluid derived mesenchymal stem cells (hAFMSCs) in terms of their morphology, proliferation, immunophenotype profile, and osteogenic capacity in vitro and in vivo. Not only greatly distinguished by cell morphology and proliferation, hAECs, hAFMSCs, and hBMSCs exhibited remarkably different signature regarding immunophenotypical profile. Microarray analysis revealed a different expression profile of genes involved in ossification along the three cell sources, highlighting the impact of different anatomical origin and molecular response to osteogenic induction on the final tissue-forming potential. Furthermore, our data indicated a potential role of FOXC2 in early osteogenic commitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.