Point cloud data are extensively used in various applications, such as autonomous driving and augmented reality since it can provide both detailed and realistic depictions of 3D scenes or objects. Meanwhile, 3D point clouds generally occupy a large amount of storage space that is a big burden for efficient communication. However, it is difficult to efficiently compress such sparse, disordered, non-uniform and high dimensional data. Therefore, this work proposes a novel deep-learning framework for point cloud geometric compression based on an autoencoder architecture. Specifically, a multi-layer residual module is designed on a sparse convolution-based autoencoders that progressively down-samples the input point clouds and reconstructs the point clouds in a hierarchically way. It effectively constrains the accuracy of the sampling process at the encoder side, which significantly preserves the feature information with a decrease in the data volume. Compared with the state-of-the-art geometry-based point cloud compression (G-PCC) schemes, our approach obtains more than 70–90% BD-Rate gain on an object point cloud dataset and achieves a better point cloud reconstruction quality. Additionally, compared to the state-of-the-art PCGCv2, we achieve an average gain of about 10% in BD-Rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.