We derive analytical solutions to the cubic-quintic nonlinear Schrödinger equation with potentials and nonlinearities depending on both propagation distance and transverse space. Among other, circle solitons and multi-peaked vortex solitons are found. These solitary waves propagate self-similarly and are characterized by three parameters, the modal numbers m and n, and the modulation depth of intensity. We find that the stable fundamental solitons with m = 0 and the low-order solitons with m = 1, n ≤ 2 can be supported with the energy eigenvalues E = 0 and E ≠ 0. However, higher-order solitons display unstable propagation over prolonged distances. The stability of solutions is examined by numerical simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.