Green's functions are generated for a simply supported, shear deformable, beam under concentrated loads and moments. These functions are subsequently employed to evaluate the stress transfer mechanisms within an adhesively joined composite beam, with particular attention to the stress field within the adhesive bond line. It is shown that the stacking order of the composite beam affects the sign of the peel stresses, switching from tensile to compressive. The results, which are obtained by solving a system of linear algebraic equations, are in good agreement with the more cumbersome finite element solutions.
The paper presents a new multi-material topology optimization method with a novel adjoint sensitivity analysis that can accommodate not only multiple plasticity but also multiple hardening models for individual materials in composite structures. Based on the proposed method, an integrated framework is developed which details the nonlinear finite element analysis, sensitivity analysis and optimization procedure. The proposed method and framework are implemented and illustrated by three numerical examples presented in this paper. An in-depth analysis of the numerical results has revealed the significant impact of the selection of plasticity and hardening model on the results of topology.
This paper proposes a concise concept for quantifying the shear/torsional stiffness of the laminated glass beams experimentally by introducing the Equivalent-Sectional Shear Modulus (ESSM), that is directly measured from the torque and sectional-rotation correlation with the torsion test and tailor-made photogrammetry technique. The advantage of this method is originated from the concept of measuring the overall rotation to torque response of a laminated glass beam altogether rather than the component individually. This eliminates the uncertainties of analytical approximations that are commonly adopted by most existing methods in which the composite shear/torsion stiffness is derived from its component mechanical properties. The photogrammetry technique increased the accuracy of the sectional rotation measurement by acquiring dense displacement sample points on the glass beam simultaneously. The accuracy of the photogrammetry setup and efficacy of the test design were proven by a micrometre and a monolithic glass beam test. One sample each for the polyvinyl butyral (PVB) and SentryGlas Plus (SGP) laminated glass beams were tested multiple times non-destructively to determine the ESSM. The result of the SGP laminated glass beam showed a closer agreement with the previous studies, however the result of the PVB laminated glass beam exhibited a larger difference from the previous studies. It also suggested that mechanical properties of the interlayer played an important role in the composite behaviour of the laminated glass beam. The experimental outcomes have demonstrated the proposed method is an accurate and effective technique for measuring the ESSM of laminated glass beams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.