High-throughput experimental screening techniques have resulted in a large number of biological network data such as protein-protein interactions (PPI) data. The analysis of these data can enhance our understanding of cellular processes. PPI network alignment is one of the comparative analysis methods for analyzing biological networks. Research on PPI networks can identify conserved subgraphs and help us to understand evolutionary trajectories across species. Some evolutionary algorithms have been proposed for coping with PPI network alignment, but most of them are limited by the lower search efficiency due to the lack of the priori knowledge. In this paper, we propose a memetic algorithm, denoted as MeAlgn, to solve the biological network alignment by optimizing an objective function which introduces topological structure and sequence similarities. MeAlign combines genetic algorithm with a local search refinement. The genetic algorithm is to find interesting alignment solution regions, and the local search is to find optimal solutions around the regions. The proposed algorithm first develops a coarse similarity score matrix for initialization and then it uses a specific neighborhood heuristic local search strategy to find an optimal alignment. In MeAlign, the information of topological structure and sequence similarities is used to guide our mapping. Experimental results demonstrate that our algorithm can achieve a better mapping than some state-of-the-art algorithms and it makes a better balance between the network topology and nodes sequence similarities.
Molecular interactions data increase exponentially with the advance of biotechnology. This makes it possible and necessary to comparatively analyze the different data at a network level. Global network alignment is an important network comparison approach to identify conserved subnetworks and get insight into evolutionary relationship across species. Network alignment which is analogous to subgraph isomorphism is known to be an NP-hard problem. In this paper, we introduce a novel heuristic Particle-Swarm-Optimization based Network Aligner (PSONA), which optimizes a weighted global alignment model considering both protein sequence similarity and interaction conservations. The particle statuses and status updating rules are redefined in a discrete form by using permutation. A seed-and-extend strategy is employed to guide the searching for the superior alignment. The proposed initialization method "seeds" matches with high sequence similarity into the alignment, which guarantees the functional coherence of the mapping nodes. A greedy local search method is designed as the "extension" procedure to iteratively optimize the edge conservations. PSONA is compared with several state-of-art methods on ten network pairs combined by five species. The experimental results demonstrate that the proposed aligner can map the proteins with high functional coherence and can be used as a booster to effectively refine the well-studied aligners.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.