The COVID-19 public health crisis has quickly led to an economic crisis, impacting many people and businesses in the world. This study examines how the pandemic affects workforces and workers' income. We quantify the impact of staggered resumption of work, after the coronavirus lockdowns, on the migrant workers' income. Using data on population movements of 366 Chinese cities at the daily level from the Baidu Maps-Migration Big Data Platform and historical data on the average monthly income of migrant workers, we find that the average work resumption rate (WRR) during the period of the Chinese Lantern Festival was 25.25%, which was only 30.67% of that in the same matched lunar calendar period in 2019. We then apply Gray Model First Order One Variable [GM (1, 1)] to predict the monthly income of migrant workers during the period of the COVID-19 pandemic. We show that, if without the influence of the COVID-19 pandemic, the average monthly income of migrant workers in 2020 will be expected to increase by 12% compared with 2019. We further conduct scenario analysis and show that the average monthly income of migrant workers in 2020 under the conservative scenario (COS), medium scenario (MES), and worse scenario (WOS) will be predicted to decrease by 2, 21, and 44%, respectively. Through testing, our prediction error is <5%. Our findings will help policymakers to decide when and how they implement a plan to ease the coronavirus lockdown and related financial support policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.