Conditional Text Generation has drawn much attention as a topic of Natural Language Generation (NLG) which provides the possibility for humans to control the properties of generated contents. Current conditional generation models cannot handle emerging conditions due to their joint end-to-end learning fashion. When a new condition added, these techniques require full retraining. In this paper, we present a new framework named Pre-train and Plug-in Variational Auto-Encoder (PPVAE) towards flexible conditional text generation. PPVAE decouples the text generation module from the condition representation module to allow "one-to-many" conditional generation. When a fresh condition emerges, only a lightweight network needs to be trained and works as a plug-in for PPVAE, which is efficient and desirable for real-world applications. Extensive experiments demonstrate the superiority of PPVAE against the existing alternatives with better conditionality and diversity but less training effort. 1
Recently, large-scale datasets have vastly facilitated the development in nearly all domains of Natural Language Processing. However, there is currently no cross-task dataset in NLP, which hinders the development of multi-task learning. We propose MATINF, the first jointly labeled large-scale dataset for classification, question answering and summarization. MAT-INF contains 1.07 million question-answer pairs with human-labeled categories and usergenerated question descriptions. Based on such rich information, MATINF is applicable for three major NLP tasks, including classification, question answering, and summarization. We benchmark existing methods and a novel multi-task baseline over MATINF to inspire further research. Our comprehensive comparison and experiments over MATINF and other datasets demonstrate the merits held by
Intimacy is a fundamental aspect of how we relate to others in social settings. Language encodes the social information of intimacy through both topics and other more subtle cues (such as linguistic hedging and swearing). Here, we introduce a new computational framework for studying expressions of the intimacy in language with an accompanying dataset and deep learning model for accurately predicting the intimacy level of questions (Pearson's r=0.87). Through analyzing a dataset of 80.5M questions across social media, books, and films, we show that individuals employ interpersonal pragmatic moves in their language to align their intimacy with social settings. Then, in three studies, we further demonstrate how individuals modulate their intimacy to match social norms around gender, social distance, and audience, each validating key findings from studies in social psychology. Our work demonstrates that intimacy is a pervasive and impactful social dimension of language.
How to generate relevant and informative responses is one of the core topics in response generation area. Following the task formulation of machine translation, previous works mainly consider response generation task as a mapping from a source sentence to a target sentence. To realize this mapping, existing works tend to design intuitive but complex models. However, the relevant information existed in large dialogue corpus is mainly overlooked. In this paper, we propose Sequence to Sequence with Prototype Memory Network (S2SPMN) to exploit the relevant information provided by the large dialogue corpus to enhance response generation. Specifically, we devise two simple approaches in S2SPMN to select the relevant information (named prototypes) from the dialogue corpus. These prototypes are then saved into prototype memory network (PMN). Furthermore, a hierarchical attention mechanism is devised to extract the semantic information from the PMN to assist the response generation process. Empirical studies indicate the advantage of our model over several classical and strong baselines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.