Due to the rapid development of the space–air–ground integrated network (SAGIN), a satellite communication system has the advantages of wide coverage and low requirements for a geographical environment and is gradually becoming the main competitive technology for 6G. The low-earth-orbit (LEO) satellite network has the characteristics of low transmission delay, small propagation loss, and global coverage, and its exploration has become the main research object of contemporary satellite communications. However, traditional routing algorithms cannot adapt to the characteristics of the high dynamics and load-balancing requirements of LEO satellite networks. In this paper, a load-balancing routing algorithm for LEO satellites based on Deep Q-Network (DQN-LLRA) is proposed by using deep reinforcement learning. Making use of the model obtained by the DQN training, satellite nodes can select the best routing results according to the delay, bandwidth, and queue utilization of the surrounding satellite nodes. The simulation and analysis show that the path load obtained by the proposed algorithm is low. Compared with the Q-learning-based algorithm, this algorithm reduces the maximum queue utilization rate of the routing path by 5%, reduces the average queue utilization rate of the routing path by 13%, and effectively balances the load in the network.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.