Background: Osteoarthritis (OA) is a common degenerative disease of synovial joints caused by inflammation. Acteoside (ACT), a major component and lipase inhibitor from the Chinese tea Ligustrum purpurascens kudingcha, has been reported to regulate the inflammation and immune response. The study aims to investigate the effects of ACT on inflammatory responses and joint protection in OA rats. Methods: Cell proliferation was examined by MTT and colony formation assay. Apoptosis was analyzed using flow cytometry with Annexin V/PI staining. ELISA was employed to examine the concentration of inflammatory cytokines. OA rat model was established by surgery stimulation. Results: ACT treatment significantly inhibited the upregulation of inflammatory cytokines induced by IL-1β in primary chondrocytes, including IL-6, IL-12, TNF-α and IFN-γ. ACT stimulation also enhanced the cell proliferation, while inhibited cell apoptosis in IL-1β-treated chondrocytes. Consistently, ACT treatment led to downregulation of cleaved-caspase-3 and apoptosis regulator Bax, and upregulation of Bcl-2. Furthermore, ACT treatment inhibited IL-1β-induced activation of JAK/STAT pathway. The results were confirmed in surgery-induced OA rat model. Moreover, ACT treatment significantly inhibited synovial inflammation and articular chondrocyte apoptosis in OA rats. Conclusion: Our findings indicate that ACT has the potential therapeutic effect on OA through inhibiting the inflammatory responses via inactivating JAK/STAT signaling pathway.
Kepler revealed that roughly one-third of Sunlike stars host planets orbiting within 100 days and between the size of Earth and Neptune. How do these planets form, what are they made of, and do they represent a continuous population or multiple populations? To help address these questions, we began the Magellan-TESS Survey (MTS), which uses Magellan II/PFS to obtain radial velocity (RV) masses of 30 TESS-detected exoplanets and develops an analysis framework that connects observed planet distributions to underlying populations. In the past, small-planet RV measurements have been challenging to obtain due to host star faintness and low RV semiamplitudes and challenging to interpret due to the potential biases in target selection and observation planning decisions. The MTS attempts to minimize these biases by focusing on bright TESS targets and employing a quantitative selection function and observing strategy. In this paper, we (1) describe our motivation and survey strategy, (2) present our first catalog of planet density constraints for 27 TESS Objects of Interest (TOIs; 22 in our population analysis sample, 12 that are members of the same systems), and (3) employ a hierarchical Bayesian model to produce preliminary constraints on the mass–radius (M-R) relation. We find that the biases causing previous M-R relations to predict fairly high masses at 1 R ⊕ have been reduced. This work can inform more detailed studies of individual systems and offer a framework that can be applied to future RV surveys with the goal of population inferences.
Aim: This study aimed to preliminarily evaluate the safety and efficacy of human adipose-derived mesenchymal progenitor cells (haMPCs) in combination with microfracture and hyaluronic acid (HA) for treating cartilage defects. Materials & methods: A total of 30 patients with medial femoro-tibial condylar cartilage defects were randomized into three groups: arthroscopic microfracture group and normal saline injection, arthroscopic microfracture and intra-articular injection of HA, or arthroscopic microfracture in combination with intra-articular injection of HA and haMPCs. Results & conclusions: The data demonstrated that intra-articular injection of haMPCs plus microfracture and HA is a safe procedure to improve joint function in patients with knee cartilage defects. These findings provide an impetus for future research on this treatment. ClinicalTrials.gov Identifier: NCT02855073
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.