Accumulating evidence suggests important roles for the receptor tyrosine kinase Axl in cancer progression, invasion, metastasis, drug resistance, and patient mortality, highlighting Axl as an attractive target for therapeutic development. We have generated and characterized a potent and selective small-molecule inhibitor, R428, that blocks the catalytic and procancerous activities of Axl. R428 inhibits Axl with low nanomolar activity and blocked Axl-dependent events, including Akt phosphorylation, breast cancer cell invasion, and proinflammatory cytokine production. Pharmacologic investigations revealed favorable exposure after oral administration such that R428-treated tumors displayed a dose-dependent reduction in expression of the cytokine granulocyte macrophage colony-stimulating factor and the epithelial-mesenchymal transition transcriptional regulator Snail. In support of an earlier study, R428 inhibited angiogenesis in corneal micropocket and tumor models. R428 administration reduced metastatic burden and extended survival in MDA-MB-231 intracardiac and 4T1 orthotopic (median survival, >80 days compared with 52 days; P < 0.05) mouse models of breast cancer metastasis. Additionally, R428 synergized with cisplatin to enhance suppression of liver micrometastasis. Our results show that Axl signaling regulates breast cancer metastasis at multiple levels in tumor cells and tumor stromal cells and that selective Axl blockade confers therapeutic value in prolonging survival of animals bearing metastatic tumors. Cancer Res; 70(4); 1544-54. ©2010 AACR.
Esophageal adenocarcinoma (EAC) arises in the backdrop of reflux-induced metaplastic phenomenon known as Barrett esophagus. The prognosis of advanced EAC is dismal, and there is an urgent need for identifying molecular targets for therapy. Serial Analysis of Gene Expression (SAGE) was performed on metachronous mucosal biopsies from a patient who underwent progression to EAC during endoscopic surveillance. SAGE confirmed significant upregulation of Axl “tags” during the multistep progression of Barrett esophagus to EAC. In a cohort of 92 surgically resected EACs, Axl overexpression was associated with shortened median survival on both univariate (p < 0.004) and multivariate (p < 0.036) analysis. Genetic knockdown of Axl receptor tyrosine kinase (RTK) function was enabled in two EAC lines (OE33 and JH-EsoAd1) using lentiviral short hairpin RNA (shRNA). Genetic knockdown of Axl in EAC cell lines inhibited invasion, migration and in vivo engraftment, which was accompanied by downregulation in the activity of the Ral GTPase proteins (RalA and RalB). Restoration of Ral activation rescued the transformed phenotype of EAC cell lines, suggesting a novel effector mechanism for Axl in cancer cells. Pharmacological inhibition of Axl was enabled using a small molecule antagonist, R428 (Rigel Pharmaceuticals). Pharmacological inhibition of Axl with R428 in EAC cell lines significantly reduced anchorage-independent growth, invasion and migration. Blockade of Axl function abrogated phosphorylation of ERBB2 (Her-2/neu) at the Tyr877 residue, indicative of receptor crosstalk. Axl RTK is an adverse prognostic factor in EAC. The availability of small molecule inhibitors of Axl function provides a tractable strategy for molecular therapy of established EAC.
Previous research has demonstrated that brain stimulation can improve inhibitory control. However, the neural mechanisms underlying such artificially induced improvement remain unclear. In this study, by coupling anodal transcranial direct current stimulation (atDCS) with functional MRI, we found that atDCS over preSMA effectively improved stopping speed, which was associated with increased BOLD response in the preSMA and ventromedial prefrontal cortex (vmPFC). Furthermore, such atDCS-induced BOLD increase in vmPFC was positively correlated with participants' improvement in stopping efficiency, and the functional connectivity between preSMA and vmPFC increased during successful stop. These results suggest that the rapid behavioral improvement from preSMA brain stimulation involves modulated medial-frontal activity and preSMA-vmPFC functional connectivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.