The JUNO experiment locates in Jinji town, Kaiping city, Jiangmen city, Guangdong province. The geographic location is east longitude 112 • 31'05' and North latitude 22 • 07'05'. The experimental site is 43 km to the southwest of the Kaiping city, a county-level city in the prefecture-level city Jiangmen in Guangdong province. There are five big cities, Guangzhou, Hong Kong, Macau, Shenzhen, and Zhuhai, all in ∼200 km drive distance, as shown in figure 3.
Graphene has attracted multidisciplinary study because of its unique physicochemical properties. Herein, few-layered graphene oxide nanosheets were synthesized from graphite using the modified Hummers method, and were used as sorbents for the removal of Cd(II) and Co(II) ions from large volumes of aqueous solutions. The effects of pH, ionic strength, and humic acid on Cd(II) and Co(II) sorption were investigated. The results indicated that Cd(II) and Co(II) sorption on graphene oxide nanosheets was strongly dependent on pH and weakly dependent on ionic strength. The abundant oxygen-containing functional groups on the surfaces of graphene oxide nanosheets played an important role on Cd(II) and Co(II) sorption. The presence of humic acid reduced Cd(II) and Co(II) sorption on graphene oxide nanosheets at pH < 8. The maximum sorption capacities (C(smax)) of Cd(II) and Co(II) on graphene oxide nanosheets at pH 6.0 ± 0.1 and T = 303 K were about 106.3 and 68.2 mg/g, respectively, higher than any currently reported. The thermodynamic parameters calculated from temperature-dependent sorption isotherms suggested that Cd(II) and Co(II) sorptions on graphene oxide nanosheets were endothermic and spontaneous processes. The graphene oxide nanosheets may be suitable materials in heavy metal ion pollution cleanup if they are synthesized in large scale and at low price in near future.
A kind of sulfonated graphene (around 3 nm thick) with high dispersion properties has been synthesized. It is demonstrated to adsorb persistent organic aromatic pollutants effectively from aqueous solutions. The adsorption capability of the prepared sulfonated graphene nanomaterials approaches ∼2.3–2.4 mmol g−1 for naphthalene and 1‐naphthol, which is one of the highest capabilities of today's nanomaterials. This highly effective adsorbent may be a promising candidate to remove aromatic chemicals from large volumes of aqueous solutions. It opens a new door for cost effective environmental pollution management with graphene in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.