IMPORTANCE Time spent in outdoor activities has decreased owing to home confinement for the coronavirus disease 2019 (COVID-19) pandemic. Concerns have been raised about whether home confinement may have worsened the burden of myopia owing to substantially decreased time spent outdoors and increased screen time at home. OBJECTIVE To investigate the refractive changes and prevalence of myopia in school-aged children during the COVID-19 home confinement. DESIGN, SETTING, AND PARTICIPANTSA prospective cross-sectional study using school-based photoscreenings in 123 535 children aged 6 to 13 years from 10 elementary schools in Feicheng, China, was conducted. The study was performed during 6 consecutive years (2015-2020). Data were analyzed in July 2020.EXPOSURES Noncycloplegic photorefraction was examined using a photoscreener device. MAIN OUTCOMES AND MEASURESThe spherical equivalent refraction was recorded for each child and the prevalence of myopia for each age group during each year was calculated. The mean spherical equivalent refraction and prevalence of myopia were compared between 2020 (after home confinement) and the previous 5 years for each age group. RESULTSOf the 123 535 children included in the study, 64 335 (52.1%) were boys. A total of 194 904 test results (389 808 eyes) were included in the analysis. A substantial myopic shift (approximately −0.3 diopters [D]) was found in the 2020 school-based photoscreenings compared with previous years (2015-2019) for younger children aged 6 (−0.32 D), 7 (−0.28 D), and 8 (−0.29 D) years. The prevalence of myopia in the 2020 photoscreenings was higher than the highest prevalence of myopia within 2015-2019 for children aged 6 (21.5% vs 5.7%), 7 (26.2% vs 16.2%), and 8 (37.2% vs 27.7%) years. The differences in spherical equivalent refraction and the prevalence of myopia between 2020 and previous years were minimal in children aged 9 to 13 years.CONCLUSIONS AND RELEVANCE Home confinement during the COVID-19 pandemic appeared to be associated with a significant myopic shift for children aged 6 to 8 years according to 2020 school-based photoscreenings. However, numerous limitations warrant caution in the interpretation of these associations, including use of noncycloplegic refractions and lack of orthokeratology history or ocular biometry data. Younger children's refractive status may be more sensitive to environmental changes than older ages, given the younger children are in a critical period for the development of myopia.
Background: Spinal cord injury (SCI) can lead to severe motor and sensory dysfunction with high disability and mortality. In recent years, mesenchymal stem cell (MSC)-secreted nano-sized exosomes have shown great potential for promoting functional behavioral recovery following SCI. However, MSCs are usually exposed to normoxia in vitro, which differs greatly from the hypoxic micro-environment in vivo. Thus, the main purpose of this study was to determine whether exosomes derived from MSCs under hypoxia (HExos) exhibit greater effects on functional behavioral recovery than those under normoxia (Exos) following SCI in mice and to seek the underlying mechanism. Methods: Electron microscope, nanoparticle tracking analysis (NTA), and western blot were applied to characterize differences between Exos and HExos group. A SCI model in vivo and a series of in vitro experiments were performed to compare the therapeutic effects between the two groups. Next, a miRNA microarray analysis was performed and a series of rescue experiments were conducted to verify the role of hypoxic exosomal miRNA in SCI. Western blot, luciferase activity, and RNA-ChIP were used to investigate the underlying mechanisms. Results: Our results indicate that HExos promote functional behavioral recovery by shifting microglial polarization from M1 to M2 phenotype in vivo and in vitro. A miRNA array showed miR-216a-5p to be the most enriched in HExos and potentially involved in HExos-mediated microglial polarization. TLR4 was identified as the target downstream gene of miR-216a-5p and the miR-216a-5p/TLR4 axis was confirmed by a series of gain-and loss-offunction experiments. Finally, we found that TLR4/NF-κB/PI3K/AKT signaling cascades may be involved in the modulation of microglial polarization by hypoxic exosomal miR-216a-5p. Conclusion: Hypoxia preconditioning represents a promising and effective approach to optimize the therapeutic actions of MSC-derived exosomes and a combination of MSC-derived exosomes and miRNAs may present a minimally invasive method for treating SCI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.