A rapid, on-site,
and accurate SARS-CoV-2 detection method is crucial for the prevention
and control of the COVID-19 epidemic. However, such an ideal screening
technology has not yet been developed for the diagnosis of SARS-CoV-2.
Here, we have developed a deep learning-based surface-enhanced Raman
spectroscopy technique for the sensitive, rapid, and on-site detection
of the SARS-CoV-2 antigen in the throat swabs or sputum from 30 confirmed
COVID-19 patients. A Raman database based on the spike protein of
SARS-CoV-2 was established from experiments and theoretical calculations.
The corresponding biochemical foundation for this method is also discussed.
The deep learning model could predict the SARS-CoV-2 antigen with
an identification accuracy of 87.7%. These results suggested that
this method has great potential for the diagnosis, monitoring, and
control of SARS-CoV-2 worldwide.
Wearable and portable mobile phones play a critical role in the market, and one of the key technologies is the flexible electrode with high specific capacity and excellent mechanical flexibility. Herein, a wire-in-wire TiO2/C nanofibers (TiO2 ww/CN) film is synthesized via electrospinning with selenium as a structural inducer. The interconnected carbon network and unique wire-in-wire nanostructure cannot only improve electronic conductivity and induce effective charge transports, but also bring a superior mechanic flexibility. Ultimately, TiO2 ww/CN film shows outstanding electrochemical performance as free-standing electrodes in Li/K ion batteries. It shows a discharge capacity as high as 303 mAh g−1 at 5 A g−1 after 6000 cycles in Li half-cells, and the unique structure is well-reserved after long-term cycling. Moreover, even TiO2 has a large diffusion barrier of K+, TiO2 ww/CN film demonstrates excellent performance (259 mAh g−1 at 0.05 A g−1 after 1000 cycles) in K half-cells owing to extraordinary pseudocapacitive contribution. The Li/K full cells consisted of TiO2 ww/CN film anode and LiFePO4/Perylene-3,4,9,10-tetracarboxylic dianhydride cathode possess outstanding cycling stability and demonstrate practical application from lighting at least 19 LEDs. It is, therefore, expected that this material will find broad applications in portable and wearable Li/K-ion batteries.
The Chinese CubeSat Mission, Gamma Ray Integrated Detectors (GRID), recently detected its first gamma-ray burst, GRB 210121A, which was jointly observed by the Gravitational wave high-energy Electromagnetic Counterpart All-sky Monitor (GECAM). This burst is confirmed by several other missions, including Fermi and Insight-HXMT. We combined multimission observational data and performed a comprehensive analysis of the burst’s temporal and spectral properties. Our results show that the burst is relatively special in its high peak energy, thermal-like low-energy indices, and large fluence. By putting it to the E
p
–E
γ,iso relation diagram with assumed distance, we found that this burst can be constrained at the redshift range of [0.3, 3.0]. The thermal spectral component is also confirmed by the direct fit of the physical models to the observed spectra. Interestingly, the physical photosphere model also constrained a redshift of z ∼ 0.3 for this burst, which helps us to identify a host galaxy candidate at such a distance within the location error box. Assuming that the host galaxy is real, we found that the burst can be best explained by the photosphere emission of a typical fireball with an initial radius of r
0 ∼ 3.2 × 107 cm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.