Background Emergency department (ED) overcrowding is a concerning global health care issue, which is mainly caused by the uncertainty of patient arrivals, especially during the pandemic. Accurate forecasting of patient arrivals can allow health resource allocation in advance to reduce overcrowding. Currently, traditional data, such as historical patient visits, weather, holiday, and calendar, are primarily used to create forecasting models. However, data from an internet search engine (eg, Google) is less studied, although they can provide pivotal real-time surveillance information. The internet data can be employed to improve forecasting performance and provide early warning, especially during the epidemic. Moreover, possible nonlinearities between patient arrivals and these variables are often ignored. Objective This study aims to develop an intelligent forecasting system with machine learning models and internet search index to provide an accurate prediction of ED patient arrivals, to verify the effectiveness of the internet search index, and to explore whether nonlinear models can improve the forecasting accuracy. Methods Data on ED patient arrivals were collected from July 12, 2009, to June 27, 2010, the period of the 2009 H1N1 pandemic. These included 139,910 ED visits in our collaborative hospital, which is one of the biggest public hospitals in Hong Kong. Traditional data were also collected during the same period. The internet search index was generated from 268 search queries on Google to comprehensively capture the information about potential patients. The relationship between the index and patient arrivals was verified by Pearson correlation coefficient, Johansen cointegration, and Granger causality. Linear and nonlinear models were then developed with the internet search index to predict patient arrivals. The accuracy and robustness were also examined. Results All models could accurately predict patient arrivals. The causality test indicated internet search index as a strong predictor of ED patient arrivals. With the internet search index, the mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the linear model reduced from 5.3% to 5.0% and from 24.44 to 23.18, respectively, whereas the MAPE and RMSE of the nonlinear model decreased even more, from 3.5% to 3% and from 16.72 to 14.55, respectively. Compared with each other, the experimental results revealed that the forecasting system with extreme learning machine, as well as the internet search index, had the best performance in both forecasting accuracy and robustness analysis. Conclusions The proposed forecasting system can make accurate, real-time prediction of ED patient arrivals. Compared with the static traditional variables, the internet search index significantly improves forecasting as a reliable predictor monitoring continuous behavior trend and sudden changes during the epidemic (P=.002). The nonlinear model performs better than the linear counterparts by capturing the dynamic relationship between the index and patient arrivals. Thus, the system can facilitate staff planning and workflow monitoring.
BACKGROUND Emergency department (ED) overcrowding is a concerning global health care issue, which is mainly caused by the uncertainty of patient arrivals, especially during the pandemic. Accurate forecasting of patient arrivals can allow health resource allocation in advance to reduce overcrowding. Currently, traditional data, such as historical patient visits, weather, holiday, and calendar, are primarily used to create forecasting models. However, data from an internet search engine (eg, Google) is less studied, although they can provide pivotal real-time surveillance information. The internet data can be employed to improve forecasting performance and provide early warning, especially during the epidemic. Moreover, possible nonlinearities between patient arrivals and these variables are often ignored. OBJECTIVE This study aims to develop an intelligent forecasting system with machine learning models and internet search index to provide an accurate prediction of ED patient arrivals, to verify the effectiveness of the internet search index, and to explore whether nonlinear models can improve the forecasting accuracy. METHODS Data on ED patient arrivals were collected from July 12, 2009, to June 27, 2010, the period of the 2009 H1N1 pandemic. These included 139,910 ED visits in our collaborative hospital, which is one of the biggest public hospitals in Hong Kong. Traditional data were also collected during the same period. The internet search index was generated from 268 search queries on Google to comprehensively capture the information about potential patients. The relationship between the index and patient arrivals was verified by Pearson correlation coefficient, Johansen cointegration, and Granger causality. Linear and nonlinear models were then developed with the internet search index to predict patient arrivals. The accuracy and robustness were also examined. RESULTS All models could accurately predict patient arrivals. The causality test indicated internet search index as a strong predictor of ED patient arrivals. With the internet search index, the mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the linear model reduced from 5.3% to 5.0% and from 24.44 to 23.18, respectively, whereas the MAPE and RMSE of the nonlinear model decreased even more, from 3.5% to 3% and from 16.72 to 14.55, respectively. Compared with each other, the experimental results revealed that the forecasting system with extreme learning machine, as well as the internet search index, had the best performance in both forecasting accuracy and robustness analysis. CONCLUSIONS The proposed forecasting system can make accurate, real-time prediction of ED patient arrivals. Compared with the static traditional variables, the internet search index significantly improves forecasting as a reliable predictor monitoring continuous behavior trend and sudden changes during the epidemic (<i>P</i>=.002). The nonlinear model performs better than the linear counterparts by capturing the dynamic relationship between the index and patient arrivals. Thus, the system can facilitate staff planning and workflow monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.