Mg-Gd-Y-Zn-Zr Mg alloys show excellent performance in high-end manufacturing due to its strength, hardness and corrosion resistance. However, the hot deformation and dynamic recrystallization (DRX) behaviors of Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr were not studied. For this article, hot compression behavior of homogenized high rare-earth (RE) content Mg-13.5Gd-3.2Y-2.3Zn-0.5Zr (wt%) alloy was investigated by using the Gleeble-3500D thermo-simulation test machine under the temperature of 350–500 °C and the strain rate of 0.001–1 s−1. It was found that the high flow stress corresponded to the low temperature and high strain rate, which showed DRX steady state curve during the hot compression. The hot deformation average activation was 263.17 kJ/mol, which was obtained by the analysis of the hyperbolic constitutive equation and the Zener-Hollomon parameter. From observation of the microstructure, it was found that kink deformation of long period stacking ordered (LPSO) phase was one of the important coordination mechanisms of hot deformation at low temperature. The processing map with the strain of 0.5 was established under the basis of dynamic material model (DMM); it described two high power dissipation domains: one appearing in the temperature range of 370–440 °C and the strain rate range of 0.001–0.006 s−1, the other appearing in the temperature range of 465–500 °C and strain rate range of 0.001–0.05 s−1, in which dynamic recrystallization (DRX) mainly ocurred. The highest degree of DRX was 18% from the observation of the metallographic.
Ultra-thin-walled tubes of magnesium alloys have received more and more attention in producing precision components for medical devices. Therefore, thin-walled tubes with high quality are desperately needed. In this study, the process of multi-pass variable wall thickness extrusion was carried out on an AZ80 + 0.4%Ce Mg alloy with up to five passes—one-pass backward extrusion and four-pass extension—to fabricate the seamless thin-walled tube with an inside diameter of 6.0 mm and a wall thickness of 0.6 mm. The average grain size decreased from 46.3 μm to 8.9 μm at the appropriate deformation temperature of 350 °C with the punch speed of 0.1 mm/s. X-ray diffraction (XRD), optical microscope (OM), scanning electron microscopy (SEM), and the Vickers hardness (HV) tester were utilized to study the phases, microstructure, and hardness evolution. It can be observed that low deformation temperatures (240 °C and 270 °C) and low strain (1 pass extrusion and 1 pass extension) lead to twins that occupy the grains to coordinate deformation, and a slip system was activated with the accumulation of strain. The results of the Vickers hardness test showed that twinning, precipitation of second phases, twinning dynamic recrystallization (TDRX), and work hardening were combined to change the hardness of tubes at 240 °C and 270 °C. The hardness reached 93 HV after the third pass extension without annealing at 350 °C.
In the current work, cyclic expansion extrusion with an asymmetrical extrusion cavity (CEE-AEC), as a relatively novel severe plastic deformation method, was applied to fabricate an AZ31B magnesium alloy plate with a size of 50 × 100 × 220 mm, and the resultant microstructure, texture development, and mechanical properties were systematically investigated. A refined and homogeneous grain structure was achieved after three passes of deformation due to dynamic recrystallization. The grain refinement degree in comparison to as-cast alloys was more than ~96%. With the increasing number of CEE-AEC passes, a basal inclination texture was gradually formed, with the basal planes inclined ~45° from the transverse direction to the extrusion direction, which could be attributed to the introduction of an asymmetrical extrusion cavity that led to an increasing Schmid factor for the activation of basal <a> slip systems. The comprehensive mechanical properties were improved by successive multi-passes of CEE-AEC processing, especially due to the ductility reaching to 30.0 ± 1.3% after three passes of deformation. The competition between the grain refinement and texture modification were the main strengthening mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.