Fungi are often ignored in studies on gut microbes because of their low level of presence (making up only 0.1% of the total microorganisms) in the gastrointestinal tract (GIT) of monogastric animals. Recent studies using novel technologies such as next generation sequencing have expanded our understanding on the importance of intestinal fungi in humans and animals. Here, we provide a comprehensive review on the fungal community, the so-called mycobiome, and their functions from recent studies in humans and mice. In the GIT of humans, fungi belonging to the phyla Ascomycota, Basidiomycota and Chytridiomycota are predominant. The murine intestines harbor a more diverse assemblage of fungi. Diet is one of the major factors influencing colonization of fungi in the GIT. Presence of the genus Candida is positively associated with dietary carbohydrates, but are negatively correlated with dietary amino acids, proteins, and fatty acids. However, the relationship between diet and the fungal community (and functions), as well as the underlying mechanisms remains unclear. Dysbiosis of intestinal fungi can cause invasive infections and inflammatory bowel diseases (IBD). However, it is not clear whether dysbiosis of the mycobiome is a cause, or a result of IBD. Compared to non-inflamed intestinal mucosa, the abundance and diversity of fungi is significantly increased in the inflamed mucosa. The commonly observed commensal fungal species Candida albicans might contribute to occurrence and development of IBD. Limited studies show that Candida albicans might interact with immune cells of the host intestines through the pathways associated with Dectin-1, Toll-like receptor 2 (TLR2), and TLR4. This review is expected to provide new thoughts for future studies on intestinal fungi and for new therapies to fungal infections in the GIT of human and animals.
The nanocrystals of CeF 3 with the hexagonal structure and different morphologies such as the disk, the rod, and the dot have been successfully synthesized via a mild ultrasound assisted route from an aqueous solution of cerium nitrate and different fluorine sources (KBF 4 , NaF, NH 4 F). The use of different fluorine sources has a remarkable effect on the morphology of the final product. The luminescence and UV-vis absorption properties of CeF 3 nanocrystals with different morphologies have been investigated. Compared with other shape nanocrystals, the luminescence intensity of the disklike nanocrystals is obviously enhanced. It is suggested that the function-improved materials could be obtained by tailoring the shape of the CeF 3 nanocrystals.
In the present study, we investigated the structure and function of hainantoxin-III (HNTX-III), a 33-residue polypeptide from the venom of the spider Ornithoctonus hainana. It is a selective antagonist of neuronal tetrodotoxin-sensitive voltage-gated sodium channels. HNTX-III suppressed Nav1.7 current amplitude without significantly altering the activation, inactivation, and repriming kinetics. Short extreme depolarizations partially activated the toxin-bound channel, indicating voltage-dependent inhibition of HNTX-III. HNTX-III increased the deactivation of the Nav1.7 current after extreme depolarizations. The HNTX-III·Nav1.7 complex was gradually dissociated upon prolonged strong depolarizations in a voltage-dependent manner, and the unbound toxin rebound to Nav1.7 after a long repolarization. Moreover, analysis of chimeric channels showed that the DIIS3-S4 linker was critical for HNTX-III binding to Nav1.7. These data are consistent with HNTX-III interacting with Nav1.7 site 4 and trapping the domain II voltage sensor in the closed state. The solution structure of HNTX-III was determined by two-dimensional NMR and shown to possess an inhibitor cystine knot motif. Structural analysis indicated that certain basic, hydrophobic, and aromatic residues mainly localized in the C terminus may constitute an amphiphilic surface potentially involved in HNTX-III binding to Nav1.7. Taken together, our results show that HNTX-III is distinct from β-scorpion toxins and other β-spider toxins in its mechanism of action and binding specificity and affinity. The present findings contribute to our understanding of the mechanism of toxin-sodium channel interaction and provide a useful tool for the investigation of the structure and function of sodium channel isoforms and for the development of analgesics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.