The photothermoelectric effect, directly converting light energy into electrical energy, shows promising prospects in self-powered broad-band optical detection, which can extend to various applications, such as sensing, optoelectronic communications, and wide-temperature-range measurements. However, the low photosensitivity, narrow-band response, and rapid performance degeneration under continuous illumination restrict its broad application. Herein, we propose a simple bottom-up strategy to manipulate nanowires (NWs) into a well-defined multilayer Te-Ag 2 Te-Ag NW film, resulting in a high-performance photothermoelectric photodetector with a broad-band responsivity (4.1 V/W), large detectivity (944 MHz 1/2 W −1 ), and fast response speed (0.4− 0.7 s from 365 to 1200 nm). In addition, the ultrathin structure endows this device with slow and weak transverse heat conduction, enabling a stable voltage without an obvious degeneration over 1500 s. The highly anisotropic arrangement of NWs gives this device a prominent polarization sensitivity. Prospectively, this hierarchically designed nanowire film provides a promising pathway toward engineering photodetectors with high performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.