Based on the solid–liquid two-phase flow model, SST k-ω model, and Lagrangian equation model of particle motion, numerical simulations of the sediment–water flow in the injector of a large Pelton turbine were conducted. The distribution rules of pressure, velocity, erosion rate, and erosion location of the injector were obtained by analyzing the sediment–water flow characteristics and sediment erosion distribution characteristics of the injector. The results revealed that the velocity distribution trend of the water inside the cylindrical jet exhibited a nonlinear distribution, and the phenomenon of “velocity deficit” occurred at the end of the needle guide and needle tip, resulting in a decrease in the jet quality of the injector. The sediment particle diameter affected the erosion rate of the needle and erosion location of the needle and nozzle port ring. This study provided guidance for sediment erosion analysis and the prediction of the utility of large Pelton turbines.
To analyze the cause and mechanism of oil mist escaping from the lower guide bearing during the operation of a turbine, the oil-gas mixture in the lower guide bearing was numerically simulated by using the VOF two-phase flow model and the SST turbulence model. The influences of different sealing clearances and speeds on the flow field and the oil-gas distribution in the oil tank were studied, and the escaping characteristics of oil mist were analyzed. The results show that increasing the clearance of the labyrinth seal will reduce the pressure difference between the inside and outside of the oil tank and reduce the driving force for the escape of the oil mist. However, increasing the clearance will increase the turbulence of the flow field, the number and volume of bubbles in the lubricating oil, which will lead to the uneven distribution of oil and gas and reduce the motion stability of the lower guide bearing. The change of speed will affect the normal use of the shaft-collar pump. High speed will aggravate the generation of bubbles in the oil tank and increase the possibility of cavitation in the lower guide bearing structure. In engineering practices, it is necessary to comprehensively consider factors such as oil mist escape phenomenon, economic benefits, process manufacturing and assembly, and adopt the lower guide bearing structure with a suitable labyrinth seal clearance.
During the operation of a Pelton turbine, the centerline of the nozzle jet may deviate from the bucket pitch circle due to the low installation and maintenance accuracy, which will reduce the operating efficiency and the stability of the turbine and even cause severe vibrations and damages. Based on the VOF (Volume of Fluid) two-phase flow model and the SST k-ω turbulence model, the flow characteristics of a Pelton turbine were simulated with the nozzle jet deviating from the bucket pitch circle. The pressure pulsation inside the bucket and the force distribution of the runner were obtained, the turbine oscillation and efficiency were measured before and after the jet deviation, and the effects of the radial and axial deviations on the stability and efficiency of the Pelton turbine were analyzed. The results show that both the radial and axial deviations of the jet cause a significant increase in the axial force and the pressure pulsation amplitude of the turbine; the radial and tangential forces on the runner are slightly reduced; the maximum axial force on the runner is increased by 4 times and 2 times, respectively, after the axial and radial deviations within the maximum value allowed by the industry standard; and the efficiency of the turbine is reduced by 0.4% and 0.3%, respectively. The maximum relative amplitude of pressure pulsation in the radial offset case appears in the center of the bucket blade, while the axial offset case causes uneven pressure distribution on both sides of the diverter blade, uneven force on the bucket blade of the runner, and fatigue damage. By comparing the operation of the runner under the two offset cases, we can find that the axial offset of the jet has a greater impact on the stability of the runner than the radial offset, and the unit is more prone to vibration, increasing the risk of the unit lifting.
In pumped storage units, the rotor-bearing electromagnetic system is under the joint influence of hydraulics, mechanics, and electromagnetics, and the mechanism of unit vibration problems is very complex to investigate. ANSYS software is used to establish a three-dimensional model of a pumped storage power plant’s rotor-bearing electromagnetic system, and the stiffness coefficient of the unbalanced magnetic traction forces is calculated using the Fourier series of the magnetic conductivity of the air gap. This shows that the nonequilibrium magnetic attraction increases non-linearly with increasing excitation current and eccentricity of the rotor. At each order, the critical velocity of the rotor system increases as the stiffness factor of the bearing increases, with the greatest increase in critical velocity at the third and fourth orders. In the first-order mode-oscillation pattern, the unbalanced magnetic attraction has an effect on the intrinsic frequency of the transverse oscillation, with a reduction in the amplitude of the intrinsic frequency by 34.65%. Axial and transverse modal vibrations manifest themselves as upward and downward motions and transverse oscillations in different portions of the rotor system, respectively, whereas torsional modal vibrations manifest as a radial broadening or reduction in the generator rotor, runner, and coupling portions of the rotor system. The results of the study provide a theoretical foundation and a computational method for the dynamic analysis and design of the rotor system of pumped storage power stations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.