To predict the consequences of environmental change on the structure and composition of communities, it is necessary to also understand the regional drivers underlying the structuring of these communities. Here, we have taken a hypothesis-based approach to test the relative importance of niche versus neutral processes using niche overlap, species traits and population asynchrony in two crossed treatments of fertilization and grazing in an alpine meadow community. Our results suggested that the observed species biomass overlap was not significantly different between treatments of grazing, grazing × fertilization and grazer exclusion. In contrast, the species biomass overlap was higher than expected in fertilization treatments when grazers were excluded. On the one hand, we found no relationship between species traits and relative abundance in grazing, grazing × fertilization and grazer-exclusion treatments; on the other hand, mechanistic trait-based theory could be used to predict species relative abundance patterns in fertilization treatments when grazers were excluded. From grazing to fertilization, when grazers were excluded, there was a slight increase in species synchrony, which indicated that the complementary dynamic of species gradually changed from complete independence into synchronously fluctuating with increasing fertilization. Based on the above results, we concluded that stochastic and deterministic processes formed ends of a continuum from grazing to fertilization when grazers were excluded in an alpine meadow plant community, and the importance of niche differences between species in structuring grassland communities increased with increasing fertilization and decreased with grazing.
China’s coastal areas suffer from typhoon attacks every year. Rainstorms induced by typhoons characteristically are high intensity with a large amount of rain and usually induce floods and waterlogging in the affected area. Guangdong province has the highest frequency of typhoon hits in China. It has a special geographical position as well as unique climatic features, but the typhoon flood disaster risk has not been fully assessed in this area. This article attempts to fill this gap by providing a comprehensive risk assessment for the area. By combining the Analytical Hierarchy Process (AHP) and multi-factor analysis through geographic information system (GIS) and the comprehensive weighted evaluation, the typhoon flood disaster risk is evaluated from four different aspects with seventeen indicators. A comprehensive study of the typhoon flood disaster risk is carried out, and the risk maps with a resolution of 1 km2 have been made. There is a good coherence between the typhoon flood risk map and historical records of typhoon floods in Guangdong province. The results indicate that the comprehensive typhoon flood disaster risk in the coastal regions of Guangdong province is obviously higher than in the Northern mountainous areas. Chaoshan plain and Zhanjiang city have the highest risk of typhoon flood disaster. Shaoguan and Qingyuan cities, which are in the Northern mountainous areas, have the lowest risk. The spatial distribution of typhoon flood disaster risks shows that it has certain regulations along the coast and rivers, but it may be affected by economic and human activities. This article is significant for environmental planning and disaster management strategies of the study area as well as in similar climatic regions in other parts of the world.
With the development of technology, more infants receive general anesthesia for surgery, other interventions, or clinical examination at an early stage after birth. However, whether general anesthetics can affect the function and structure of the developing infant brain remains an important, complex, and controversial issue. Sevoflurane is the most-used anesthetic in infants, but this drug is potentially neurotoxic. Short or single exposure to sevoflurane has a weak effect on cognitive function, while long or repeated exposure to general anesthetics may cause cognitive dysfunction. This review focuses on the mechanisms by which sevoflurane exposure during development may induce long-lasting undesirable effects on the brain. We review neural cell death, neural cell damage, impaired assembly and plasticity of neural circuits, tau phosphorylation, and neuroendocrine effects as important mechanisms for sevoflurane-induced developmental neurotoxicity. More advanced technologies and methods should be applied to determine the underlying mechanism(s) and guide prevention and treatment of sevoflurane-induced neurotoxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.