Electromechanical actuators (EMAs) are more and more widely used as actuation devices in flight control system of aircrafts and helicopters. The reliability of EMAs is vital because it will cause serious accidents if the malfunction of EMAs occurs, so it is significant to detect and diagnose the fault of EMAs timely. However, EMAs often run under variable conditions in realistic environment, and the vibration signals of EMAs are nonlinear and nonstationary, which make it difficult to effectively achieve fault diagnosis. This paper proposed a fault diagnosis method of electromechanical actuators based on variational mode decomposition (VMD) multifractal detrended fluctuation analysis (MFDFA) and probabilistic neural network (PNN). First, the vibration signals were decomposed by VMD into a number of intrinsic mode functions (IMFs). Second, the multifractal features hidden in IMFs were extracted by using MFDFA, and the generalized Hurst exponents were selected as the feature vectors. Then, the principal component analysis (PCA) was introduced to realize dimension reduction of the extracted feature vectors. Finally, the probabilistic neural network (PNN) was utilized to classify the fault modes. The experimental results show that this method can effectively achieve the fault diagnosis of EMAs even under diffident working conditions. Simultaneously, the diagnosis performance of the proposed method in this paper has an advantage over that of EMD-MFDFA method for feature extraction.
Abstract. Electro-mechanical actuators (EMAs) are increasingly being used as critical actuation devices of the aircraft. It will cause serious accidents once the fault of EMAs occurs, thus the fault diagnosis of EMAs is essential to maintain the normal operation of aircraft. In this paper, a method based on WPD-STFT time-frequency entropy and PNN is proposed to achieve fault diagnosis of EMAs by processing the vibration signals collected by the accelerometer installed in the EMAs. Firstly, the vibration signals are decomposed by wavelet packet to obtain the signal components of different frequency bands, the signal components are subjected to STFT and spectrograms are obtained. Then, time-frequency entropy is calculated and combined with principal component analysis (PCA) for dimension reduction as the feature vector. Finally, the probabilistic neural network (PNN) classifier is introduced to classify the fault modes. The experimental result shows that this method can accomplish the accurate fault diagnosis of EMAs. Moreover, the performance of the proposed WPD-STFT time-frequency entropy method has an advantage over that of WPD-PCA method or STFT combined with mass-moment entropy method for feature extraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.