It is well established that small heat shock proteins (sHSPs) play an important role in thermotolerance in various organisms due to their abundance and diversity. In the present study, a chloroplast small heat shock protein gene (LeHSP21) from tomato (Lycopersicon esculentum cv PKM-1) was constitutively expressed in tobacco (Nicotiana tabacum L. cv Wisconsin 38) plants via Agrobacterium-mediated transformation. When compared to wild-type control plants, transgenic tobacco plants constitutively expressing LeHSP21, driven by the cauliflower mosaic virus 35S promoter, exhibited improved tolerance to both high temperature and oxidative stress. Furthermore, when the seedlings were subjected to high temperature treatment, the activities of anti-oxidative enzymes and the content of proline were significantly higher in transgenic plants than those in the wild-type plants. Our results presented here demonstrate the feasibility of improving high temperature and oxidative stress tolerance in plants through the expression of LeHSP21 gene.
The plant actin depolymerizing factor (ADF) binds to both monomeric and filamentous actin, and is directly involved in the depolymerization of actin filaments. To better understand the actin binding sites of the Arabidopsis thaliana L. AtADF1, we generated mutants of AtADF1 and investigated their functions in vitro and in vivo. Analysis of mutants harboring amino acid substitutions revealed that charged residues (Arg98 and Lys100) located at the α-helix 3 and forming an actin binding site together with the N-terminus are essential for both G- and F-actin binding. The basic residues on the β-strand 5 (K82/A) and the α-helix 4 (R135/A, R137/A) form another actin binding site that is important for F-actin binding. Using transient expression of CFP-tagged AtADF1 mutant proteins in onion (Allium cepa) peel epidermal cells and transgenic Arabidopsis thaliana L. plants overexpressing these mutants, we analyzed how these mutant proteins regulate actin organization and affect seedling growth. Our results show that the ADF mutants with a lower affinity for actin filament binding can still be functional, unless the affinity for actin monomers is also affected. The G-actin binding activity of the ADF plays an essential role in actin binding, depolymerization of actin polymers, and therefore in the control of actin organization.
The COVID-19 pandemic brings unprecedented crisis for public health and economics in the world. Detecting specific antibodies to SARS-CoV-2 is a powerful supplement for the diagnosis of COVID-19 and is important for epidemiological studies and vaccine validations. Herein, a rapid and quantitative detection method of anti-SARS-CoV-2 IgG antibody was built based on the optofluidic point-of-care testing fluorescence biosensor. Without complicated steps needed, the portable system is suitable for on-site sensitive determination of anti-SARS-CoV-2 IgG antibody in serum. Under the optimal conditions, the whole detection procedure is about 25 min with a detection limit of 12.5 ng/mL that can well meet the diagnostic requirements. The method was not obviously affected by IgM and serum matrix and demonstrated to have good stability and reliability in real sample analysis. Compared to ELISA test results, the proposed method exhibits several advantages including wider measurement range and easier operation. The method provides a universal platform for rapid and quantitative analysis of other related biomarkers, which is of significance for the prevention and control of COVID-19 pandemic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.