This paper presents an adaptive neural tracking control approach for a two-joint robotic manipulator with unknown time-varying delays. In order to work out the effect of unknown time-varying delays on the two-joint robotic manipulator, the appropriate Lyapunov–Krasovskii functionals (LKFs) and separation technology are chosen to settle this matter. The neural networks work as an approximator that has the advantage of estimating the unknown function in the system. In this paper, Lyapunov stability analysis can prove that all signals of the closed-loop system are semiglobal uniformly ultimately bounded and the tracking error can converge to a compact neighborhood with respect to zero. The simulation consequences demonstrate the availability of the feedforward control approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.