Noble metal nanoparticles have been extensively studied to understand and apply their plasmonic responses, upon coupling with electromagnetic radiation, to research areas such as sensing, photocatalysis, electronics, and biomedicine. The plasmonic properties of metal nanoparticles can change significantly with changes in particle size, shape, composition, and arrangement. Thus, stabilization of the fabricated nanoparticles is crucial for preservation of the desired plasmonic behavior. Because plasmonic nanoparticles find application in diverse fields, a variety of different stabilization strategies have been developed. Often, stabilizers also function to enhance or improve the plasmonic properties of the nanoparticles. This review provides a representative overview of how gold and silver nanoparticles, the most frequently used materials in current plasmonic applications, are stabilized in different application platforms and how the stabilizing agents improve their plasmonic properties at the same time. Specifically, this review focuses on the roles and effects of stabilizing agents such as surfactants, silica, biomolecules, polymers, and metal shells in colloidal nanoparticle suspensions. Stability strategies for other types of plasmonic nanomaterials, lithographic plasmonic nanoparticle arrays, are discussed as well. CONTENTS 1. Introduction 664 2. Synthesis of Ag and AuNPs and Stabilization with Adsorbed/Covalently Attached Ligands in Solution Phase 666 2.1. Theoretical Background of Colloidal Stability of the Plasmonic Nanoparticles 667 2.2.
Research at the interface of synthetic materials, biochemistry, and analytical techniques has enabled sensing platforms for applications across many research communities. Herein we review the materials used as affinity agents to create surface-enhanced Raman spectroscopy (SERS) sensors. Our scope includes those affinity agents (antibody, aptamer, small molecule, and polymer) that facilitate the intrinsic detection of targets relevant to biology, medicine, national security, environmental protection, and food safety. We begin with an overview of the analytical technique (SERS) and considerations for its application as a sensor. We subsequently describe four classes of affinity agents, giving a brief overview on affinity, production, attachment chemistry, and first uses with SERS. Additionally, we review the SERS features of the affinity agents, and the analytes detected by intrinsic SERS with that affinity agent class. We conclude with remarks on affinity agent selection for intrinsic SERS sensing platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.