We present Tianshou, a highly modularized python library for deep reinforcement learning (DRL) that uses PyTorch as its backend. Tianshou aims to provide building blocks to replicate common RL experiments and has officially supported more than 15 classic algorithms succinctly. To facilitate related research and prove Tianshou's reliability, we release Tianshou's benchmark of MuJoCo environments, covering 9 classic algorithms and 9/13 Mujoco tasks with state-of-the-art performance. We open-sourced Tianshou at https://github.com/thu-ml/tianshou/, which has received over 3k stars and become one of the most popular PyTorch-based DRL libraries.
Learning rational behaviors in First-person-shooter (FPS) games is a challenging task for Reinforcement Learning (RL) with the primary difficulties of huge action space and insufficient exploration. To address this, we propose a hierarchical agent based on combined options with intrinsic rewards to drive exploration. Specifically, we present a hierarchical model that works in a manager-worker fashion over two levels of hierarchy. The high-level manager learns a policy over options, and the low-level workers, motivated by intrinsic reward, learn to execute the options. Performance is further improved with environmental signals appropriately harnessed. Extensive experiments demonstrate that our trained bot significantly outperforms the alternative RL-based models on FPS games requiring maze solving and combat skills, etc.
Notably, we achieved first place in VDAIC 2018 Track(1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.