The quality of ECG signals is commonly affected by severe noise, especially for the single-lead ECG signals acquired from long-term wearable devices. Recognizing and ignoring these interfered signals can reduce the error rate of automatic ECG analysis system, and in addition, improve the efficiency of cardiologists. Based on XGBoost classifier, we propose an unreadable ECG segment recognition method using features extracted through Shannon Energy Envelope (SEE) and Empirical Mode Decomposition (EMD). An unreadable CarePatchTM ECG patch database is established, containing 8169 readable segments and 6114 unreadable segments with a length of 10 seconds. The XGBoost with 5-fold cross-validation is applied and obtained an accuracy of 99.51+/-0.15%. In conclusion, SSE and EMD features contribute to the unreadable segments recognition and alleviate the misdiagnosis of abnormal rhythms.
Based on the knowledge of economics, this paper selects 22 macroeconomic indicators that best reflect the overall economic situation of the United States. After differential, logarithmic and exponential preprocessing of the original data, this paper, based on the power spectral analysis model, adaptively identifies the periodicity of the selected economic indicators, and visualize the results. As a result, it screens out 11 indicators with obvious periodicity. In the process of solving the weighted distance based on principal component analysis, correlation test is first conducted on the selected 11 single indicators of periodicity to obtain Pearson correlation heatmap. Then, the principal components are extracted by selecting the first five principal components as the virtual indicators to represent the monthly economic situation, and calculating the weighted distance value between months for visualization. Finally, we select the results of 36 months’ smoothing for analysis, figure out the time intervals with similar economic situation, and verify the conjecture of economic periodicity.
Finally, based on K-MEAN clustering analysis, the economic conditions of 352 months are classified into 3 clusters by using the weighted distance after 36 months’ smoothing. From the visualized results, it is found that there are two complete cycles, i.e. red-yellow-blue and red-yellow-blue, which is consistent with the conclusion of principal component analysis model, and proves the existence of economic cycle again.
In conclusion, based on the above PCA weighted distance and clustering analysis, it can be concluded that the economic period is around 176 months, in favor of medium long periodicity theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.