Floating treatment wetlands (FTWs) and biofilm carriers are widely used in water purification. The objective of the present work was to explore whether and to what extent an FTW integrated with plants and biofilm carriers (FTW-I) could enhance the nutrient removal efficiency. Significantly higher removal rates of ammonia nitrogen (85.2 %), total phosphorus (82.7 %), and orthophosphate (82.5 %) were observed in the FTW-I treatment relative to the FTW with plants (FTW-P; 80.0, 78.5, and 77.6 %, respectively) and the FTW with biofilm carriers (FTW-B; 56.7, 12.9, and 13.4 %, respectively) (p < 0.05). The mass balance results indicated that plant uptake was the main pathway for N and P removal (accounting for 58.1 and 91.4 %, respectively) in FTW-I, in which only 1.2 % of the N and 5.7 % of the P was deposited on the bottom of the tank. In addition, the plants translocated 43.9 and 80.2 % of the N and P in the water and 83.5 and 88.3 % of the absorbed N and P, respectively, into their aboveground tissues. The combination of an FTW and biofilm carriers can improve the efficiency of water purification, and nutrients can be rapidly removed from the system by harvesting the aboveground plant tissues.
Many-body dissipative particle dynamics (MDPD) is a novel coarse-grained numerical method that originated from dissipative particle dynamics. In the MDPD system, a density-dependent repulsive interaction and an attractive term are introduced into a conservative force, enabling the formation of vapor–liquid coexistence. In the last two decades, the MDPD is becoming a powerful tool to study various interfacial problems at mesoscale due to its Lagrangian and adaptive features. In the present paper, we review the developments in the theoretical models and applications for the MDPD. First, the MDPD theoretical backgrounds of single- and multi-component system are introduced. Then, the parameter analysis and mapping protocols in the MDPD are discussed. Furthermore, recent applications based on the MDPD, including droplet and microbubble dynamics, evolution of liquid bridges, capillary wetting, polymer solutions, and phase change, are revisited with some comments. Finally, we summarize several unsolved issues in the MDPD and outline its future developments.
Droplets sliding on surfaces always exhibit an advancing and a receding contact angle. When exerting different driving forces on the droplet to force it to slide at different velocities, the droplet would alter its shape to adapt to the new motion. Hence, different advancing/receding contact angles are likely to be observed, leading to the multiple contact angle hysteresis on a given surface. To verify this hypothesis, many-body dissipative particle dynamics is employed to perform the sliding simulation on both chemically homogeneous and heterogeneous surfaces. By ensuring the droplet sliding in uniform motions under different driving forces, the advancing/receding contact angles are recorded for analysis. Simulation results show that, for homogeneous surfaces, a larger driving force can result in both larger advancing contact angle and smaller receding contact angle, while for heterogeneous surfaces, increasing the driving force only results in smaller receding contact angles. For both cases, multiple contact angle hysteresis can be observed. These observations are contrary to the currently prevailing opinion, which believes that the contact angle hysteresis should be unique on given surfaces. Our findings would advance the understanding of wetting phenomena and possibly inspire new guidance for the design of functional interfaces.
Bacillus coagulans ( B. coagulans ) have proven to be effective in improving the development of gut immunity and microbiome, and offering protection against pathogens, especially in young animals. The newborn chicks are highly vulnerable to the foodborne pathogenic Salmonella infections, leading to high mortality and economic loss. However, whether B. coagulans can protect young chickens from Salmonella -induced intestinal mucosal damage by modulating the development of intestinal epithelium remains unclear. In this study, B. coagulans with excellent anti- Salmonella property was selected and used. The results showed that B. coagulans alleviated the morphological damage, intestinal inflammation and body weight loss caused by Salmonella enteritidis ( S. enteritidis ) infections. B. coagulans significantly increased the crypt depth. Furthermore, the goblet cell loss and downregulating of mucin 2 induced by S. enteritidis were all relieved by B. coagulans treatment. Consistently, the expression of the related genes of Notch signaling pathway was also upregulated in the S. enteritidis group but inhibited by B. coagulans . In addition, B. coagulans improved the levels of immunoglobulin A, superoxide dismutase, total antioxidant capacity, and avian beta-defensin 2 in the intestinal mucosa. This study demonstrated that B. coagulans could regulate the development of intestinal epithelium, protect the intestinal barrier, thus relieve infections with S. enteritidis in chicks, which can be used as alternatives to antibiotics in poultry feed .
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.