Current practical methods for finding the equilibrium dissociation constant, K d ,o fp rotein-small molecule complexes have inherent sources of inaccuracy.I ntroduced here is "accurate constant via transient incomplete separation" (ACTIS), which appears to be free of inherent sources of inaccuracy.C onceptually,as hort plug of the pre-equilibrated protein-small molecule mixture is pressure-propagated in ac apillary,c ausing fast transient incomplete separation of the complex from the unbound small molecule.Asuperposition of signals from these two components is measured near the capillary exit and used to calculate af raction of unbound small molecule,which,inturn, is used to calculate K d . Herein the validity of ACTIS is proven theoretically,i ts accuracy is verified by computer simulation, and its practical use is demonstrated. ACTIS has the potential to become ar eference-standardm ethod for determining K d values of protein-small molecule complexes.Reversible binding of proteins (P) to small-molecule ligands (L) plays an important role in the regulation of cellular processes. [1] In addition, most therapeutic targets are proteins, [2] and drugs are developed to form stable PL complexes with them:Complex stability is characterized by the equilibrium dissociation constant K d ,which is defined as:
Here we demonstrate a label-free solution-based approach for studying the kinetics of biopolymer-small molecule interactions. The approach utilizes kinetic capillary electrophoresis (KCE) separation and UV light absorption detection of the unlabeled small molecule. In this proof-of-concept work, we applied KCE-UV to study kinetics of interaction between a small molecule and a DNA aptamer. From the kinetic analysis of a series of aptamers, we found that dissociation rather than binding controls the stability of the complex. Because of its label-free features and generic nature, KCE-UV promises to become a practical tool for challenging kinetic studies of biopolymer-small molecule interactions.
Studying the kinetics of reversible protein-small molecule binding is a major challenge. The available approaches require that either the small molecule or the protein be modified by labeling or immobilization on a surface. Not only can such modifications be difficult to do but also they can drastically affect the kinetic parameters of the interaction. To solve this problem, we present kinetic size-exclusion chromatography with mass spectrometry detection (KSEC-MS), a solution-based label-free approach. KSEC-MS utilizes the ability of size-exclusion chromatography (SEC) to separate any small molecule from any protein-small molecule complex without immobilization and the ability of mass spectrometry (MS) to detect a small molecule without a label. The rate constants of complex formation and dissociation are deconvoluted from the temporal pattern of small molecule elution measured with MS at the exit from the SEC column. This work describes the concept of KSEC-MS and proves it in principle by measuring the rate constants of interaction between carbonic anhydrase and acetazolamide.
Here we introduce pre-equilibration kinetic size-exclusion chromatography with mass-spectrometry detection (peKSEC-MS), which is a label-free solution-based kinetic approach for characterizing non-covalent protein-small molecule interactions. In this method, a protein and a small molecule are mixed outside the column and incubated to approach equilibrium. The equilibrium mixture is then introduced into the SEC column to initiate the dissociation process by separating small molecules from the complex inside the column. A numerical model of a 1-dimensional separation was constructed to simulate mass chromatograms of the small molecule for varying rate constants of binding.
Kinetic capillary electrophoresis (KCE) is a toolset of homogeneous affinity methods for studying kinetics of noncovalent binding. Sensitive KCE measurements are typically done with fluorescence detection and require a fluorescent label on a smaller-sized binding partner. KCE with fluorescence detection is difficult to use for study of protein-small molecule interactions since labeling small molecules is cumbersome and can affect binding. A combination of KCE with mass-spectrometry (KCE-MS) has been recently suggested for label-free studies of protein-small molecule interactions. The major obstacle for studies by KCE-MS is a buffer mismatch between KCE and MS; MS requires volatile buffers while KCE of protein-ligand interactions is always run in near-physiological buffers. Here we asked a simple question: can protein-ligand interactions be studied with KCE in a volatile buffer? We compared three volatile buffers (ammonium acetate, ammonium bicarbonate, and ammonium formate) with a near-physiological buffer (Tris-acetate) for three protein-ligand pairs. The volatile buffers were found not to significantly affect protein-ligand complex stability; moreover, when used as CE run buffers, they facilitated good-quality separation of free ligands from the protein-ligand complexes. The use of volatile buffers instead of Tris-acetate in detection of small molecules by MS improved the detection limit by approximately 2 orders of magnitude. These findings prove the principle of "volatile" KCE, which can be easily coupled with MS to facilitate label-free kinetic studies of protein-small molecule interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.