We study the local dynamics near general unstable traveling waves of the 3D Gross-Pitaevskii equation in the energy space by constructing smooth local invariant center-stable, center-unstable and center manifolds. We also prove that (i) the center-unstable manifold attracts nearby orbits exponentially before they get away from the traveling waves along the center directions and (ii) if an initial data is not on the center-stable manifolds, then the forward flow will be ejected away from traveling waves exponentially fast. Furthermore, under a non-degenerate assumption, we show the orbital stability of the traveling waves on the center manifolds, which also implies the local uniqueness of the local invariant manifolds. Our approach based on a geometric bundle coordinates should work for a general class of Hamiltonian PDEs.
We prove nonlinear modulational instability for both periodic and localized perturbations of periodic traveling waves for several dispersive PDEs, including the KDV type equations (e.g. the Whitham equation, the generalized KDV equation, the Benjamin-Ono equation), the nonlinear Schrödinger equation and the BBM equation. First, the semigroup estimates required for the nonlinear proof are obtained by using the Hamiltonian structures of the linearized PDEs; Second, for KDV type equations the loss of derivative in the nonlinear term is overcome in two complementary cases: (1) for smooth nonlinear terms and general dispersive operators, we construct higher order approximation solutions and then use energy type estimates; (2) for nonlinear terms of low regularity, with some additional assumption on the dispersive operator, we use a bootstrap argument to overcome the loss of derivative.Proof. By assumption, there exists λ (k) with Re λ (k) > 0 such thatwhere J k , L k are defined in (1.8). It is easy to see that J k is a skew-adjoint operator and L k is a self-adjoint operator. Taking the real part of the L 2 inner product of (2.1) with L k v k , we get the following "conservation law":Re λv k , L k v k = Re J k L k v k , L k v k = 0.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.