A flood event induced by heavy rainfall hit the Taiyuan basin in north China in early October of 2021. In this study, we map the flood event process using the multi-temporal synthetic aperture radar (SAR) images acquired by Sentinel-1. First, we develop a spatiotemporal filter based on low-rank tensor approximation (STF-LRTA) for removing the speckle noise in SAR images. Next, we employ the classic log-ratio change indicator and the minimum error threshold algorithm to characterize the flood using the filtered images. Finally, we relate the flood inundation to the land subsidence in the Taiyuan basin by jointly analyzing the multi-temporal SAR change detection results and interferometric SAR (InSAR) time-series measurements (pre-flood). The validation experiments compare the proposed filter with the Refined-Lee filter, Gamma filter, and an SHPS-based multi-temporal SAR filter. The results demonstrate the effectiveness and advantage of the proposed STF-LRTA method in SAR despeckling and detail preservation, and the applicability to change scenes. The joint analyses reveal that land subsidence might be an important contributor to the flood event, and the flood recession process linearly correlates with time and subsidence magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.