Background
Mesenchymal stromal cells (MSCs) are multiple stromal cells existing in various tissues and have already been employed in animal models and clinical trials to treat immune disorders through potent immunosuppressive capacity. Our previous reports have suggested that MSC immunosuppression is not intrinsic but is acquired upon combined inflammatory cytokine treatment. However, the understanding of detailed molecular mechanisms involved in MSC immunomodulation remains incomplete.
Results
In the study, we report that MSCs derived from viable motheaten (mev) mice, with deficiency in SH2 domain-containing phosphatase-1 (SHP1), exhibited remarkable increased suppressive effect on activated splenocyte proliferation. Consistently, when MSCs were treated with combined inflammatory cytokines, SHP1-deficient MSCs produced dramatically more iNOS expression compared with wild-type MSCs. SHP1 was found to suppress the phosphorylation of JAK1/STAT3 and P38 signals. The classical animal model of concanavalin A (ConA)-induced liver injury was applied to examine the role of SHP1 in modulation MSC-therapeutic effect in vivo. Consistent with the results in vitro, SHP1-deficient MSCs exhibited dramatically more effective protection against ConA-induced hepatitis, compared to WT MSCs.
Conclusion
Taken together, our study reveals a possible role for SHP1 in modulation of MSC immunosuppression regulated by JAK1/STAT3 and P38 signals.
A fungus J2 producing laccase with high yield was screened in soils and identified as Abortiporus biennis. The production of laccase was induced by 0.1 mM Cu, 0.1 mM tannic acid, and 0.5 M ethanol. The laccase from Abortiporus biennis J2 was purified to electrophoretic homogeneity by a couple of steps. The N-terminal amino acid sequence of the enzyme was AIGPTADLNISNADI. The properties of the purified laccase were investigated. The result showed the laccase from Abortiporus biennis J2 is a thermo and pH stable enzyme. The laccase activity was inhibited by Hg, Cd, Fe, Ag, Cu, and Zn, while promoted by Mg, Mn at 10 mM level. Purified laccase was used to the clarification of litchi juice. After treatment with this laccase, the phenolic content of litchi juice had been found to be greatly reduced along with an increase in the clarity of the juice. The result indicated the potential of this laccase for application in juice procession.
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.