To avoid power supply hazards caused by cable failures, this paper presents an approach of incipient cable failure recognition and classification based on variational mode decomposition (VMD) and a convolutional neural network (CNN). By using VMD, the original current signal is decomposed into seven modes with different center frequencies. Then, 42 features are extracted for the seven modes and used to construct a feature vector as input of the CNN to classify incipient cable failure through deep learning. Compared with using the original signals directly as the CNN input, the proposed approach is more efficient and robust. Experiments on different classifiers, namely, the decision tree (DT), K-nearest neighbor (KNN), BP neural network (BP) and support vector machine (SVM), and show that the CNN outperforms the other classifiers in terms of accuracy.
The choice of market mechanism is key to success for any online marketplace. In recent years, as peer-to-peer (P2P) lending has seen phenomenal growth, leading P2P lending platforms have used various market mechanisms and, in some cases, even switched from one mechanism to another, chasing higher market share and overall growth. While Prosper.com, a leading P2P lending platform, has switched from the auction lending model to a fixed price lending model, recent studies show that overall social welfare was higher with the auction lending model. While the auction lending model gives more power to the lenders, the success of the auction lending model hinges on the accuracy of lenders' assessment of the credit risk of the borrowers. Building on extant literature and in support of the auction lending model to increase social welfare, we design an artifact to dynamically estimate borrower reputation to help the lenders and improve the allocative efficiency in P2P lending markets. We posit that borrowers' reputation built on transactional data, readily available on P2P lending platforms, represents the collective perception of the lenders about the borrowers. We propose a dynamic latent class model of reputation and use the latent instrumental variable approach to deal with endogeneity. We test our artifact using real-world P2P lending data. We show that accounting for reputation improves the model's explanatory power and provides a way to empirically model the evolution and impact of reputation in online platforms where repeated transactions are performed.
K E Y W O R D SBayesian analysis, dynamic latent class model, hidden Markov model, latent instrumental variable modeling, peer-to-peer lending, reputation 1
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.