Journal Pre-proof J o u r n a l P r e -p r o o f 2 ABSTRACT Infection with SARS-CoV-2, the etiologic agent of the ongoing COVID-19 pandemic, is accompanied by the shedding of the virus in stool. Therefore, the quantification of SARS-CoV-2 in wastewater affords the ability to monitor the prevalence of infections amongst the population via wastewater-based epidemiology (WBE). In the current work, SARS-CoV-2 RNA was concentrated from wastewater in a catchment in Australia and viral RNA copies were enumerated using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) resulting in two positive detections within a six day period from the same wastewater treatment plant (WWTP). The estimated RNA copy numbers observed in the wastewater were then used to estimate the number of infected individuals in the catchment via Monte Carlo simulation. Given the uncertainty and variation in the input parameters, the model estimated a median range of 171 to 1,090 infected persons in the catchment, which is in reasonable agreement with clinical observations. This work highlights the viability of WBE for monitoring infectious diseases, such as COVID-19, in communities. The work also draws attention to the need for further methodological and molecular assay validation for enveloped viruses in wastewater.Journal Pre-proof de Roda Husman, 2020;Medema et al., 2020;Wu et al., 2020). Here, we report the first evidence for the presence of SARS-CoV-2 RNA in wastewater in Australia. Our preliminary findings demonstrate the applicability of WBE for COVID-19 surveillance as a potential tool for public health monitoring at the community level. Journal Pre-proof conditions ranging from 3 × 20 s at 8,000 rpm at a 10 s interval. From here on RNA was extracted using RNeasy Power Microbiome kit as per manufacturer's instruction. Method B began with centrifugation of wastewater samples (100-200 mL) at 4,750 g for 30 mins. Supernatant was then removed carefully without disturbing the pellet and Journal Pre-proof 4 /reaction) of Oncorhynchus keta (O. keta) was added in the DNAse and RNAse free water and the Cq value obtained acted as a reference point. If the Cq value of a wastewater sample increases compared to the reference Cq value, the sample is considered to have PCR inhibitors. Wastewater samples with a 2-Cq (quantification cycle) delay was considered to have RT-qPCR inhibition (Staley et al., 2012). All RNA samples were Journal Pre-proof average quality of 15 (SLIDINGWINDOW:4:15). Reads were cropped to 120bp (CROP:120), with any less than 120bp in length discarded (MINLEN:120). Overlapping forward and reverse reads were merged using bbmerge from the BBMap suite (ver. 38.41, https://sourceforge.net/projects/bbmap/). Quality-controlled, merged reads were then mapped Journal Pre-proof describing it, through the model 10,000 times. For each estimate of infected persons, the corresponding prevalence was calculated by dividing the number of persons infected by the number of persons in the catchment. Sensitivity of the estimated number o...
Extracellular vesicles (EVs) are small membrane-surrounded structures released by different kinds of cells (normal, diseased, and transformed cells) in vivo and in vitro that contain large amounts of important substances (such as lipids, proteins, metabolites, DNA, RNA, and non-coding RNA (ncRNA), including miRNA, lncRNA, tRNA, rRNA, snoRNA, and scaRNA) in an evolutionarily conserved manner. EVs, including exosomes, play a role in the transmission of information, and substances between cells that is increasingly being recognized as important. In some infectious diseases such as parasitic diseases, EVs have emerged as a ubiquitous mechanism for mediating communication during host-parasite interactions. EVs can enable multiple modes to transfer virulence factors and effector molecules from parasites to hosts, thereby regulating host gene expression, and immune responses and, consequently, mediating the pathogenic process, which has made us rethink our understanding of the host-parasite interface. Thus, here, we review the present findings regarding EVs (especially exosomes) and recognize the role of EVs in host-parasite interactions. We hope that a better understanding of the mechanisms of parasite-derived EVs may provide new insights for further diagnostic biomarker, vaccine, and therapeutic development.
One of the biggest hurdles yet to be overcome for the continued improvement of Histone Deacetylase (HDAC) inhibitors is finding alternative motifs equipotent to the classic and ubiquitously used hydroxamic acid. The N-hydroxyl group of this motif is highly subject to sulfation/glucoronidation-based inactivation in humans; compounds containing this motif require much higher dosing in clinic to achieve therapeutic concentrations. With the goal of developing a second generation of HDAC inhibitors, lacking this hydroxamate, we designed a series of potent and selective class I HDAC inhibitors using a hydrazide motif. These inhibitors are impervious to glucuronidation and demonstrate allosteric inhibition. In vitro and ex vivo characterization of our lead analogs’ efficacy, selectivity, and toxicity profiles demonstrate they possess low nanomolar activity against models of Acute Myeloid Leukemia (AML) and are at least 100-fold more selective for AML than solid immortalized cells such as HEK293 or human peripheral blood mononuclear cells.
Systematic sampling and analysis of wastewater samples are increasingly adopted for estimating drug consumption in communities. An understanding of the in-sewer transportation and transformation of illicit drug biomarkers is critical for reducing the uncertainty of this evidence-based estimation method. In this study, biomarkers stability was investigated in lab-scale sewer reactors with typical sewer conditions. Kinetic models using the Bayesian statistics method were developed to simulate biomarkers transformation in reactors. Furthermore, a field-scale study was conducted in a real pressure sewer pipe with the systematical spiking and sampling of biomarkers and flow tracers. In-sewer degradation was observed for some spiked biomarkers over typical hydraulic retention time (i.e., a few hours). Results indicated that sewer biofilms prominently influenced biomarker stability with the retention time in wastewater. The fits between the measured and the simulated biomarkers transformation demonstrated that the lab-based model could be extended to estimate the changes of biomarkers in real sewers. Results also suggested that the variabilities of biotransformation and analytical accuracy are the two major contributors to the overall estimation uncertainty. Built upon many previous lab-scale studies, this study is one critical step forward in realizing wastewater-based epidemiology by extending biomarker stability investigations from laboratory reactors to real sewers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.