We report the synthesis of chemically asymmetric silica nanobottles (NBs) with a hydrophobic exterior surface (capped with 3-chloropropyl groups) and a hydrophilic interior surface for spatially selective cargo loading, and for application as nanoreactors and nanomotors. The silica NBs, which have a "flask bottle" shape with an average diameter of 350 nm and an opening of ca. 100 nm, are prepared by anisotropic sol-gel growth in a water/n-pentanol emulsion. Due to their chemically asymmetric properties, nanoparticles (NPs) with hydrophilic or hydrophobic surface properties can be selectively loaded inside the NBs or on the outside of the NBs, respectively. A high-performance nanomotor is constructed by selectively loading catalytically active hydrophilic Pt NPs inside the NBs. It is also demonstrated that these NBs can be used as vessels for various reactions, such as the in situ synthesis of Au NPs, and using Au NP-loaded NBs as nanoreactors for catalytic reactions.
Particle‐based pulmonary delivery has great potential for delivering inhalable therapeutics for local or systemic applications. The design of particles with enhanced aerodynamic properties can improve lung distribution and deposition, and hence the efficacy of encapsulated inhaled drugs. This study describes the nanoengineering and nebulization of metal–phenolic capsules as pulmonary carriers of small molecule drugs and macromolecular drugs in lung cell lines, a human lung model, and mice. Tuning the aerodynamic diameter by increasing the capsule shell thickness (from ≈100 to 200 nm in increments of ≈50 nm) through repeated film deposition on a sacrificial template allows precise control of capsule deposition in a human lung model, corresponding to a shift from the alveolar region to the bronchi as aerodynamic diameter increases. The capsules are biocompatible and biodegradable, as assessed following intratracheal administration in mice, showing >85% of the capsules in the lung after 20 h, but <4% remaining after 30 days without causing lung inflammation or toxicity. Single‐cell analysis from lung digests using mass cytometry shows association primarily with alveolar macrophages, with >90% of capsules remaining nonassociated with cells. The amenability to nebulization, capacity for loading, tunable aerodynamic properties, high biocompatibility, and biodegradability make these capsules attractive for controlled pulmonary delivery.
Antimony (Sb) contamination poses an emerging environmental risk, whereas its removal remains a contemporary challenge due to the lack of knowledge in its surface chemistry and efficient adsorbent. In this study, self-assembly {001} TiO was examined for its effectiveness in Sb removal, and the molecular level surface chemistry was studied with X-ray absorption spectroscopy and density functional theory calculations. The kinetics results show that Sb adsorption followed the pseudo-second order reaction, and the Langmuir adsorption capacity was 200 mg/g for Sb(III) and 156 mg/g for Sb(V). The PZC of TiO, which was 6.6 prior to the adsorption experiment, shifted to 4.8 and <0 after adsorption of Sb(III) and Sb(V), respectively, indicating the formation of negatively charged inner-sphere complexes. EXAFS results suggest that Sb(III/V) adsorption exhibited a bidentate binuclear surface complex. The orbital hybridizing of complexes was studied by XANES, molecular orbital theory (MO), and density of states (DOS) calculations. The change in orbital energy derived from orbital hybridizing of adsorbed Sb on surfaces is the driving force underlining the Sb surface chemistry. New bonds between Sb and TiO surface were formed with matched orbital energies. Integrating the molecular and electronic structures into surface complexation modeling reveals the nature of macroscopic Sb adsorption behaviors.
Poly(ethylene glycol) (PEG) is widely used in particle assembly to impart biocompatibility and stealth-like properties in vivo for diverse biomedical applications. Previous studies have examined the effect of PEG molecular weight and PEG coating density on the biological fate of various particles; however, there are few studies that detail the fundamental role of PEG molecular architecture in particle engineering and bio–nano interactions. Herein, we engineered PEG particles using a mesoporous silica (MS) templating method and investigated how the PEG building block architecture impacted the physicochemical properties (e.g., surface chemistry and mechanical characteristics) of the PEG particles and subsequently modulated particle–immune cell interactions in human blood. Varying the PEG architecture from 3-arm to 4-arm, 6-arm, and 8-arm generated PEG particles with a denser, stiffer structure, with increasing elastic modulus from 1.5 to 14.9 kPa, inducing an increasing level of immune cell association (from 15% for 3-arm to 45% for 8-arm) with monocytes. In contrast, the precursor PEG particles with the template intact (MS@PEG) were stiffer and generally displayed higher levels of immune cell association but showed the opposite trend―immune cell association decreased with increasing PEG arm numbers. Proteomics analysis demonstrated that the biomolecular corona that formed on the PEG particles minimally influenced particle–immune cell interactions, whereas the MS@PEG particle–cell interactions correlated with the composition of the corona that was abundant in histidine-rich glycoproteins. Our work highlights the role of PEG architecture in the design of stealth PEG-based particles, thus providing a link between the synthetic nature of particles and their biological behavior in blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.