Increased expression of mineral dust-induced gene (mdig, also named as mina53, MINA, or NO52) has been observed in a number of human cancers. The mechanism of how mdig contribute to the pathogenesis of cancer remains to be fully elucidated. In this report, we demonstrated that overexpression of mdig decreased the nuclear staining signal by 4′,6-diamidino-2-phenylindole (DAPI), along with a considerable enhancement in cell proliferation. Silencing mdig by shRNA resulted in a statistically significant decrease of cell proliferation. Intriguingly, mdig overexpression reduced the capacity of the cells in migration and invasion in vitro, whereas silencing mdig by shRNA/siRNA enhanced migration and invasion. Clinically, we found that increased expression of mdig in cancer tissues correlates with poorer overall survival of the lung cancer patients, esp., for those without lymph node metastasis. Taken together, our results suggest that mdig plays opposite roles on cell growth and motility, which possibly indicates the paradoxical effect of mdig at the different stages of carcinogenesis.
Environmental or occupational exposure to arsenic, a chemical element classified as metalloid, has been associated with cancer of the lung, skin, bladder, liver, etc.. Mdig (mineral dust-induced gene) is a newly identified oncogene linked to occupational lung diseases and lung cancer. It is unclear whether mdig is also involved in arsenic-induced malignant transformation of the lung cells. By using human bronchial epithelial cells and human lung cancer cell lines, we showed that arsenic was able to induce expression of mdig. We further demonstrated that this mdig induction by arsenic was partially dependent on the JNK and STAT3 signaling pathways. Disruption of the JNK or STAT3 by either chemical inhibitors or siRNAs diminished arsenic-induced accumulation of mdig mRNA and protein. Furthermore, we also showed that microRNA-21 (miR-21) and Akt were down-stream effectors of the JNK and STAT3 signaling pathways in arsenic-induced mdig expression. Transfection of the cells with anti-miR-21 or pre-treatment of the cells with Akt inhibitor blunted mdig induction by arsenic. Clinically, the levels of mdig can be applied to predict the disease progression, the first progression (FP), in non-small cell lung cancer (NSCLC) patients. Taken together, our data suggest that mdig may play important roles on the pathogenesis of arsenic-induced lung cancer and that JNK and STAT3 signaling pathways are essential in mediating arsenic-induced mdig expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.