Background Gout is a common and debilitating condition that is associated with significant morbidity and mortality. Despite advances in medical treatment, the global burden of gout continues to increase, particularly in high–sociodemographic index (SDI) regions. Objective To address the aforementioned issue, we used age-period-cohort (APC) modeling to analyze global trends in gout incidence and prevalence from 1990 to 2019. Methods Data were extracted from the Global Burden of Disease Study 2019 to assess all-age prevalence and age-standardized prevalence rates, as well as years lived with disability rates, for 204 countries and territories. APC effects were also examined in relation to gout prevalence. Future burden prediction was carried out using the Nordpred APC prediction of future incidence cases and the Bayesian APC model. Results The global gout incidence has increased by 63.44% over the past 2 decades, with a corresponding increase of 51.12% in global years lived with disability. The sex ratio remained consistent at 3:1 (male to female), but the global gout incidence increased in both sexes over time. Notably, the prevalence and incidence of gout were the highest in high-SDI regions (95% uncertainty interval 14.19-20.62), with a growth rate of 94.3%. Gout prevalence increases steadily with age, and the prevalence increases rapidly in high-SDI quantiles for the period effect. Finally, the cohort effect showed that gout prevalence increases steadily, with the risk of morbidity increasing in younger birth cohorts. The prediction model suggests that the gout incidence rate will continue to increase globally. Conclusions Our study provides important insights into the global burden of gout and highlights the need for effective management and prophylaxis of this condition. The APC model used in our analysis provides a novel approach to understanding the complex trends in gout prevalence and incidence, and our findings can inform the development of targeted interventions to address this growing health issue.
Fog computing offers a flexible solution for computational offloading for Internet of Things (IoT) services at the edge of wireless networks. It serves as a complement to traditional cloud computing, which is not cost-efficient for most offloaded tasks in IoT applications involving small-to-medium levels of computing tasks. Given the heterogeneity of tasks and resources in fog computing, it is vital to offload each task to an appropriate destination to fully utilize the potential benefit of this promising technology. In this paper, we propose a scalable priority-based index policy, referred to as the Prioritized Incremental Energy Rate (PIER), to optimize the energy efficiency of the network. We demonstrate that PIER is asymptotically optimal in a special case applicable for local areas with high volumes of homogeneous offloaded tasks and exponentially distributed task durations. In more general cases with statistically different offloaded tasks, we further demonstrate the improvement of PIER over benchmark policies in terms of energy efficiency and the robustness of PIER to different task duration distributions by extensive simulations. Our results show that PIER can perform better than benchmark policies in more than 78.6% of all simulation runs.
BACKGROUND Gout is a common and debilitating condition that is associated with significant morbidity and mortality. Despite advances in medical treatment, the global burden of gout continues to increase, particularly in high–sociodemographic index (SDI) regions. OBJECTIVE To address the aforementioned issue, we used age-period-cohort (APC) modeling to analyze global trends in gout incidence and prevalence from 1990 to 2019. METHODS Data were extracted from the Global Burden of Disease Study 2019 to assess all-age prevalence and age-standardized prevalence rates, as well as years lived with disability rates, for 204 countries and territories. APC effects were also examined in relation to gout prevalence. Future burden prediction was carried out using the <i>Nordpred</i> APC prediction of future incidence cases and the Bayesian APC model. RESULTS The global gout incidence has increased by 63.44% over the past 2 decades, with a corresponding increase of 51.12% in global years lived with disability. The sex ratio remained consistent at 3:1 (male to female), but the global gout incidence increased in both sexes over time. Notably, the prevalence and incidence of gout were the highest in high-SDI regions (95% uncertainty interval 14.19-20.62), with a growth rate of 94.3%. Gout prevalence increases steadily with age, and the prevalence increases rapidly in high-SDI quantiles for the period effect. Finally, the cohort effect showed that gout prevalence increases steadily, with the risk of morbidity increasing in younger birth cohorts. The prediction model suggests that the gout incidence rate will continue to increase globally. CONCLUSIONS Our study provides important insights into the global burden of gout and highlights the need for effective management and prophylaxis of this condition. The APC model used in our analysis provides a novel approach to understanding the complex trends in gout prevalence and incidence, and our findings can inform the development of targeted interventions to address this growing health issue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.