In recent years, the popularity of depth sensors and 3D scanners has led to a rapid development of 3D point clouds. Semantic segmentation of point cloud, as a key step in understanding 3D scenes, has attracted extensive attention of researchers. Recent advances in this topic are dominantly led by deep learning-based methods. In this paper, we provide a survey covering various aspects ranging from indirect segmentation to direct segmentation. Firstly, we review methods of indirect segmentation based on multi-views and voxel grids, as well as direct segmentation methods from different perspectives including point ordering, multi-scale, feature fusion and fusion of graph convolutional neural network (GCNN). Then, the common datasets for point cloud segmentation are exposed to help researchers choose which one is the most suitable for their tasks. Following that, we devote a part of the paper to analyze the quantitative results of these methods. Finally, the development trend of point cloud semantic segmentation technology is prospected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.